ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport and spin conversion of multi-carriers in semimetal bismuth

44   0   0.0 ( 0 )
 نشر من قبل Masashi Shiraishi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hiroyuki Emoto




اسأل ChatGPT حول البحث

In this paper, we report on the investigation of (1) the transport properties of multi-carriers in semi-metal Bi and (2) the spin conversion physics in this semimetal system in a ferrimagnetic insulator, yttrium-iron-garnet. Hall measurements reveal that electrons and holes co-exist in the Bi, with electrons being the dominant carrier. The results of a spin conversion experiment corroborate the results of the Hall measurement; in addition, the inverse spin Hall effect governs the spin conversion in the semimetal/insulator system. This study provides further insights into spin conversion physics in semimetal systems.

قيم البحث

اقرأ أيضاً

A quantitative investigation of spin-pumping-induced spin-transport in n-GaAs was conducted at room temperature (RT). GaAs has a non-negligible spin orbit interaction, so that electromotive force due to the inverse spin Hall effect (ISHE) of GaAs con tributed to the electromotive force detected with a platinum (Pt) spin detector. The electromotive force detected by the Pt spin detector had opposite polarity to that measured with a Ni80Fe20/GaAs bilayer due to the opposite direction of spin current flow, which demonstrates successful spin transport in the n-GaAs channel. A two-dimensional spin-diffusion model that considers the ISHE in the n-GaAs channel reveals an accurate spin diffusion length of t_s = 1.09 um in n-GaAs (NSi = 4x10^16 cm-3) at RT, which is approximately half that estimated by the conventional model.
Bismuth chalcogenides Bi$_2$Se$_3$ and Bi$_2$Te$_3$ are semiconductors, which can be both thermoelectric materials (TE) and topological insulators (TI). Lattice defects arising from vacancies, impurities, or dopants in these materials are important i n that they provide the charge carriers in TE applications and compromise the performance of these materials as TIs. We present the first solid-state nuclear magnetic resonance (NMR) study of the $^{77}$Se and $^{125}$Te NMR resonances in polycrystalline powders of Bi$_2$Se$_3$ and Bi$_2$Te$_3$, respectively. The spin-lattice ($T_1$) relaxation is modeled by at most two exponentials. Within the framework of this model, the NMR measurement is sensitive to the distribution of native defects within these materials. One component corresponds to a stoichiometric fraction, an insulator with a very long $T_1$, whereas the other component is attributed to a sample fraction with high defect content with a short $T_1$ resulting from interaction with the conduction carriers. The absence of a very long $T_1$ in the bismuth telluride suggests defects throughout the sample. For the bismuth selenide, defect regions segregate into domains. We also find a substantial difference in the short $T_1$ component for $^{125}$Te nuclei (76 ms) and $^{77}$Se (0.63 s) in spite of the fact that these materials have nearly identical lattice structures, chemical and physical properties. Investigations of the NMR shift and Korringa law indicate that the coupling to the conduction band electrons at the chalcogenide sites is much stronger in the telluride. The results are consistent with a stronger spin-orbit coupling (SOC) to the $p$-band electrons in the telluride. If most parameters of a given material are kept equal, this type of experiment could provide a useful probe of SOC in engineered TI materials.
In Peierls-distorted materials, photoexcitation leads to a strongly coupled transient response between structural and electronic degrees of freedom, always measured independently of each other. Here we use transient reflectivity in the extreme ultrav iolet to quantify both responses in photoexcited bismuth in a single measurement. With the help of first-principles calculations based on density-functional theory (DFT) and time-dependent DFT, the real-space atomic motion and the temperature of both electrons and holes as a function of time are captured simultaneously, retrieving an anticorrelation between the $A_{1g}$ phonon dynamics and carrier temperature. The results reveal a coherent, bi-directional energy exchange between carriers and phonons, which is a dynamical counterpart of the static Peierls-Jones distortion, providing first-time validation of previous theoretical predictions.
Bismuth is one of the rare materials in which second sound has been experimentally observed. Our exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this Poiseuille phonon flow between $approx$ 1.5 K and $app rox$ 3.5 K, in sample size of 3.86 mm and 9.06 mm, in consistency with the experimental observations. Hydrodynamic heat flow characteristics are given for any temperature: heat wave propagation length, drift velocity, Knudsen number. We discuss a Gedanken-experiment allowing to assess the presence of a hydrodynamic regime in any bulk material.
Topological semimetal may have substantial applications in electronics, spintronics and quantum computation. Recently, ZrTe is predicted as a new type of topological semimetal due to coexistence of Weyl fermion and massless triply degenerate nodal po ints. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove mechanical stability of ZrTe, and the bulk modulus, shear modulus, Youngs modulus and Possions ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on Seebeck coefficient, which along a(b) and c directions for pristine ZrTe at 300 K is 46.26 $mu$V/K and 80.20 $mu$V/K, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with calculated value, the scattering time is determined for 1.59 $times$ $10^{-14}$ s. The predicted room-temperature electronic thermal conductivity along a(b) and c directions is 2.37 $mathrm{W m^{-1} K^{-1}}$ and 2.90 $mathrm{W m^{-1} K^{-1}}$, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 $mathrm{W m^{-1} K^{-1}}$ and 43.08 $mathrm{W m^{-1} K^{-1}}$ along a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces observable effect on lattice thermal conductivity. It is noted that average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Gr$mathrm{ddot{u}}$neisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا