ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature effect on the coupling between coherent longitudinal phonons and plasmons in n- and p-type GaAs

54   0   0.0 ( 0 )
 نشر من قبل Jianbo Hu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n- and p-type GaAs by using ultrafast optical phonon spectroscopy. A suppression of coherent oscillations has been observed in p-type GaAs at lower temperature, strikingly different from n-type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of surface field due to a slow diffusion of photoexcited carriers in p-type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.

قيم البحث

اقرأ أيضاً

We report time- and angle-resolved photoemission spectroscopy measurements on the Sb(111) surface. We observe band- and momentum-dependent binding-energy oscillations in the bulk and surface bands driven by $A_{1g}$ and $E_{g}$ coherent phonons. Whil e the bulk band shows simultaneous $A_{1g}$ and $E_{g}$ oscillations, the surface bands show either $A_{1g}$ or $E_{g}$ oscillations. The observed behavior is reproduced by frozen-phonon calculations based on density-functional theory. This evidences the connection between electron-phonon coupling and coherent binding energy dynamics.
Coherent control experiments using a pair of collinear femtosecond laser pulses have been carried out to manipulate longitudinal optical (LO) phonon-plasmon coupled (LOPC) modes in both p- and n-type GaAs. By tuning the interpulse separation, remarka bly distinct responses have been observed in the two samples. To understand the results obtained a phenomenological model taking the delayed formation of coherent LOPC modes into account is proposed. The model suggests that the lifetime of coherent LOPC modes plays a key role and the interference of the coherent LO phonons excited successively by two pump pulses strongly affects the manipulation of coherent LOPC modes.
311 - Yi Li , Chenbo Zhao , Wei Zhang 2021
The interaction between magnetic and acoustic excitations have recently inspired many interdisciplinary studies ranging from fundamental physics to circuit implementation. Specifically, the exploration of their coherent interconversion enabled via th e magnetoelastic coupling opens a new playground combining straintronics and spintronics, and provides a unique platform for building up on-chip coherent information processing networks with miniaturized magnonic and acoustic devices. In this Perspective, we will focus on the recent progress of magnon-phonon coupled dynamic systems, including materials, circuits, imaging and new physics. In particular, we highlight the unique features such as nonreciprocal acoustic wave propagation and strong coupling between magnons and phonons in magnetic thin-film systems, which provides a unique platform for their coherent manipulation and transduction. We will also review the frontier of surface acoustic wave resonators in coherent quantum transduction and discuss how the novel acoustic circuit design can be applied in microwave spintronics.
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On coo ling, we observed phonon splitting accompanying the structural phase transition at Tc = 450K as well as the onset of the incommensurately modulated structure at 250 K. In the two antiferromagnetic phases below T_N1 = 90K and T_N2 = 48 K, several infrared-active excitations emerge in the meV range; their frequencies correspond to the maxima in the magnon density of states obtained by INS. At the magnetic phase transitions, these modes display strong anomalies and for some of them, a transfer of dielectric strength from the higher-frequency phonons is observed. We propose that these modes are electromagnons. Remarkably, at least two of these modes remain active also in the paramagnetic phase; for this reason, we call them paraelectromagnons. In accordance with this observation, quasielastic neutron scattering revealed short-range magnetic correlations persisting within temperatures up to 500K above T_N1.
451 - F.Cadiz , D. Lagarde , P. Renucci 2016
Carrier and spin recombination are investigated in p-type GaAs of acceptor concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly neutral and phot oelectrons can either recombine with holes bound to acceptors (e-A0 line) or form excitons which are mostly trapped on neutral acceptors forming the (A0X) complex. It is found that the spin lifetime is shorter for electrons that recombine through the e-A0 transition due to spin relaxation generated by the exchange scattering of free electrons with either trapped or free holes, whereas spin flip processes are less likely to occur once the electron forms with a free hole an exciton bound to a neutral acceptor. An increase of exci- tation power induces a cross-over to a regime where the bimolecular band-to-band (b-b) emission becomes more favorable due to screening of the electron-hole Coulomb interaction and ionization of excitonic complexes and free excitons. Then, the formation of excitons is no longer possible, the carrier recombination lifetime increases and the spin lifetime is found to decrease dramatically with concentration due to fast spin relaxation with free photoholes. In this high density regime, both the electrons that recombine through the e-A0 transition and through the b-b transition have the same spin relaxation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا