ﻻ يوجد ملخص باللغة العربية
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do an alternative optimization of both the dictionary and the sparse code; the other way is to optimize the dictionary by restricting it over the orthogonal group. The latter one is called orthogonal dictionary learning which has a lower complexity implementation, hence, it is more favorable for lowcost devices. However, existing schemes on orthogonal dictionary learning only work with batch data and can not be implemented online, which is not applicable for real-time applications. This paper proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. In the algorithm design, we propose a new Frank-Wolfe-based online algorithm with a convergence rate of O(ln t/t^(1/4)). The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed online orthogonal dictionary learning scheme.
In this work, we propose an infinite restricted Boltzmann machine~(RBM), whose maximum likelihood estimation~(MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse s
This paper considers the fundamental problem of learning a complete (orthogonal) dictionary from samples of sparsely generated signals. Most existing methods solve the dictionary (and sparse representations) based on heuristic algorithms, usually wit
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the margi
We propose a variant of the Frank-Wolfe algorithm for solving a class of sparse/low-rank optimization problems. Our formulation includes Elastic Net, regularized SVMs and phase retrieval as special cases. The proposed Primal-Dual Block Frank-Wolfe al
Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems, giving an approximate representation of complex data sets in terms of a reduced number of extracted features. Convergence guarantees for most of the OMF algorit