ﻻ يوجد ملخص باللغة العربية
This paper considers the fundamental problem of learning a complete (orthogonal) dictionary from samples of sparsely generated signals. Most existing methods solve the dictionary (and sparse representations) based on heuristic algorithms, usually without theoretical guarantees for either optimality or complexity. The recent $ell^1$-minimization based methods do provide such guarantees but the associated algorithms recover the dictionary one column at a time. In this work, we propose a new formulation that maximizes the $ell^4$-norm over the orthogonal group, to learn the entire dictionary. We prove that under a random data model, with nearly minimum sample complexity, the global optima of the $ell^4$ norm are very close to signed permutations of the ground truth. Inspired by this observation, we give a conceptually simple and yet effective algorithm based on matching, stretching, and projection (MSP). The algorithm provably converges locally at a superlinear (cubic) rate and cost per iteration is merely an SVD. In addition to strong theoretical guarantees, experiments show that the new algorithm is significantly more efficient and effective than existing methods, including KSVD and $ell^1$-based methods. Preliminary experimental results on mixed real imagery data clearly demonstrate advantages of so learned dictionary over classic PCA bases.
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics. In this paper, we investigate a family of $ell_p$-norm ($p>2,p in mathbb{N}$) maximization approaches for the comple
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do
Phaseless diffraction measurements recorded by a CCD detector are often affected by Poisson noise. In this paper, we propose a dictionary learning model by employing patches based sparsity to denoise Poisson phaseless measurement. The model consists
In over two decades of research, the field of dictionary learning has gathered a large collection of successful applications, and theoretical guarantees for model recovery are known only whenever optimization is carried out in the same model class as
Massive MIMO has been regarded as a key enabling technique for 5G and beyond networks. Nevertheless, its performance is limited by the large overhead needed to obtain the high-dimensional channel information. To reduce the huge training overhead asso