ﻻ يوجد ملخص باللغة العربية
Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems, giving an approximate representation of complex data sets in terms of a reduced number of extracted features. Convergence guarantees for most of the OMF algorithms in the literature assume independence between data matrices, and the case of dependent data streams remains largely unexplored. In this paper, we show that a non-convex generalization of the well-known OMF algorithm for i.i.d. stream of data in citep{mairal2010online} converges almost surely to the set of critical points of the expected loss function, even when the data matrices are functions of some underlying Markov chain satisfying a mild mixing condition. This allows one to extract features more efficiently from dependent data streams, as there is no need to subsample the data sequence to approximately satisfy the independence assumption. As the main application, by combining online non-negative matrix factorization and a recent MCMC algorithm for sampling motifs from networks, we propose a novel framework of Network Dictionary Learning, which extracts ``network dictionary patches from a given network in an online manner that encodes main features of the network. We demonstrate this technique and its application to network denoising problems on real-world network data.
Online Tensor Factorization (OTF) is a fundamental tool in learning low-dimensional interpretable features from streaming multi-modal data. While various algorithmic and theoretical aspects of OTF have been investigated recently, general convergence
Online nonnegative matrix factorization (ONMF) is a matrix factorization technique in the online setting where data are acquired in a streaming fashion and the matrix factors are updated each time. This enables factor analysis to be performed concurr
We develop fast spectral algorithms for tensor decomposition that match the robustness guarantees of the best known polynomial-time algorithms for this problem based on the sum-of-squares (SOS) semidefinite programming hierarchy. Our algorithms can
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do
Motivated by online decision-making in time-varying combinatorial environments, we study the problem of transforming offline algorithms to their online counterparts. We focus on offline combinatorial problems that are amenable to a constant factor ap