ﻻ يوجد ملخص باللغة العربية
We propose a variant of the Frank-Wolfe algorithm for solving a class of sparse/low-rank optimization problems. Our formulation includes Elastic Net, regularized SVMs and phase retrieval as special cases. The proposed Primal-Dual Block Frank-Wolfe algorithm reduces the per-iteration cost while maintaining linear convergence rate. The per iteration cost of our method depends on the structural complexity of the solution (i.e. sparsity/low-rank) instead of the ambient dimension. We empirically show that our algorithm outperforms the state-of-the-art methods on (multi-class) classification tasks.
In this work, we propose an infinite restricted Boltzmann machine~(RBM), whose maximum likelihood estimation~(MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse s
We propose an algorithm-independent framework to equip existing optimization methods with primal-dual certificates. Such certificates and corresponding rate of convergence guarantees are important for practitioners to diagnose progress, in particular
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear c
Previous studies on stochastic primal-dual algorithms for solving min-max problems with faster convergence heavily rely on the bilinear structure of the problem, which restricts their applicability to a narrowed range of problems. The main contributi
We unveil the connections between Frank Wolfe (FW) type algorithms and the momentum in Accelerated Gradient Methods (AGM). On the negative side, these connections illustrate why momentum is unlikely to be effective for FW type algorithms. The encoura