ﻻ يوجد ملخص باللغة العربية
Online convex optimization is a framework where a learner sequentially queries an external data source in order to arrive at the optimal solution of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversary that observe the submitted queries. In this paper, we study how to optimally obfuscate the learners queries in first-order online convex optimization, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversarys probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of accurate prediction by the adversary be kept below $1/L$, then the overhead in query complexity is additive in $L$ in the minimax formulation, but multiplicative in $L$ in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this mode
We study differentially private (DP) algorithms for stochastic convex optimization (SCO). In this problem the goal is to approximately minimize the population loss given i.i.d. samples from a distribution over convex and Lipschitz loss functions. A l
The rapid adoption of machine learning has increased concerns about the privacy implications of machine learning models trained on sensitive data, such as medical records or other personal information. To address those concerns, one promising approac
Since 2014, the NIH funded iDASH (integrating Data for Analysis, Anonymization, SHaring) National Center for Biomedical Computing has hosted yearly competitions on the topic of private computing for genomic data. For one track of the 2020 iteration o
We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas