ﻻ يوجد ملخص باللغة العربية
Since 2014, the NIH funded iDASH (integrating Data for Analysis, Anonymization, SHaring) National Center for Biomedical Computing has hosted yearly competitions on the topic of private computing for genomic data. For one track of the 2020 iteration of this competition, participants were challenged to produce an approach to federated learning (FL) training of genomic cancer prediction models using differential privacy (DP), with submissions ranked according to held-out test accuracy for a given set of DP budgets. More precisely, in this track, we are tasked with training a supervised model for the prediction of breast cancer occurrence from genomic data split between two virtual centers while ensuring data privacy with respect to model transfer via DP. In this article, we present our 3rd place submission to this competition. During the competition, we encountered two main challenges discussed in this article: i) ensuring correctness of the privacy budget evaluation and ii) achieving an acceptable trade-off between prediction performance and privacy budget.
Principal components analysis (PCA) is a standard tool for identifying good low-dimensional approximations to data in high dimension. Many data sets of interest contain private or sensitive information about individuals. Algorithms which operate on s
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train D
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existi
Neural architecture search, which aims to automatically search for architectures (e.g., convolution, max pooling) of neural networks that maximize validation performance, has achieved remarkable progress recently. In many application scenarios, sever
Federated learning (FL) is a distributed learning paradigm in which many clients with heterogeneous, unbalanced, and often sensitive local data, collaborate to learn a model. Local Differential Privacy (LDP) provides a strong guarantee that each clie