ﻻ يوجد ملخص باللغة العربية
We study differentially private (DP) algorithms for stochastic convex optimization (SCO). In this problem the goal is to approximately minimize the population loss given i.i.d. samples from a distribution over convex and Lipschitz loss functions. A long line of existing work on private convex optimization focuses on the empirical loss and derives asymptotically tight bounds on the excess empirical loss. However a significant gap exists in the known bounds for the population loss. We show that, up to logarithmic factors, the optimal excess population loss for DP algorithms is equal to the larger of the optimal non-private excess population loss, and the optimal excess empirical loss of DP algorithms. This implies that, contrary to intuition based on private ERM, private SCO has asymptotically the same rate of $1/sqrt{n}$ as non-private SCO in the parameter regime most common in practice. The best previous result in this setting gives rate of $1/n^{1/4}$. Our approach builds on existing differentially private algorithms and relies on the analysis of algorithmic stability to ensure generalization.
We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this mode
We study the differentially private Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problems for non-smooth convex functions. We get a (nearly) optimal bound on the excess empirical risk and excess population loss with subq
Online convex optimization is a framework where a learner sequentially queries an external data source in order to arrive at the optimal solution of a convex function. The paradigm has gained significant popularity recently thanks to its scalability
Finding efficient, easily implementable differentially private (DP) algorithms that offer strong excess risk bounds is an important problem in modern machine learning. To date, most work has focused on private empirical risk minimization (ERM) or pri