ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Private Learning with PATE

130   0   0.0 ( 0 )
 نشر من قبل Nicolas Papernot
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid adoption of machine learning has increased concerns about the privacy implications of machine learning models trained on sensitive data, such as medical records or other personal information. To address those concerns, one promising approach is Private Aggregation of Teacher Ensembles, or PATE, which transfers to a student model the knowledge of an ensemble of teacher models, with intuitive privacy provided by training teachers on disjoint data and strong privacy guaranteed by noisy aggregation of teachers answers. However, PATE has so far been evaluated only on simple classification tasks like MNIST, leaving unclear its utility when applied to larger-scale learning tasks and real-world datasets. In this work, we show how PATE can scale to learning tasks with large numbers of output classes and uncurated, imbalanced training data with errors. For this, we introduce new noisy aggregation mechanisms for teacher ensembles that are more selective and add less noise, and prove their tighter differential-privacy guarantees. Our new mechanisms build on two insights: the chance of teacher consensus is increased by using more concentrated noise and, lacking consensus, no answer need be given to a student. The consensus answers used are more likely to be correct, offer better intuitive privacy, and incur lower-differential privacy cost. Our evaluation shows our mechanisms improve on the original PATE on all measures, and scale to larger tasks with both high utility and very strong privacy ($varepsilon$ < 1.0).

قيم البحث

اقرأ أيضاً

Recent rapid development of machine learning is largely due to algorithmic breakthroughs, computation resource development, and especially the access to a large amount of training data. However, though data sharing has the great potential of improvin g machine learning models and enabling new applications, there have been increasing concerns about the privacy implications of data collection. In this work, we present a novel approach for training differentially private data generator G-PATE. The generator can be used to produce synthetic datasets with strong privacy guarantee while preserving high data utility. Our approach leverages generative adversarial nets (GAN) to generate data and protect data privacy based on the Private Aggregation of Teacher Ensembles (PATE) framework. Our approach improves the use of privacy budget by only ensuring differential privacy for the generator, which is the part of the model that actually needs to be published for private data generation. To achieve this, we connect a student generator with an ensemble of teacher discriminators. We also propose a private gradient aggregation mechanism to ensure differential privacy on all the information that flows from the teacher discriminators to the student generator. We empirically show that the G-PATE significantly outperforms prior work on both image and non-image datasets.
Since 2014, the NIH funded iDASH (integrating Data for Analysis, Anonymization, SHaring) National Center for Biomedical Computing has hosted yearly competitions on the topic of private computing for genomic data. For one track of the 2020 iteration o f this competition, participants were challenged to produce an approach to federated learning (FL) training of genomic cancer prediction models using differential privacy (DP), with submissions ranked according to held-out test accuracy for a given set of DP budgets. More precisely, in this track, we are tasked with training a supervised model for the prediction of breast cancer occurrence from genomic data split between two virtual centers while ensuring data privacy with respect to model transfer via DP. In this article, we present our 3rd place submission to this competition. During the competition, we encountered two main challenges discussed in this article: i) ensuring correctness of the privacy budget evaluation and ii) achieving an acceptable trade-off between prediction performance and privacy budget.
Some machine learning applications involve training data that is sensitive, such as the medical histories of patients in a clinical trial. A model may inadvertently and implicitly store some of its training data; careful analysis of the model may the refore reveal sensitive information. To address this problem, we demonstrate a generally applicable approach to providing strong privacy guarantees for training data: Private Aggregation of Teacher Ensembles (PATE). The approach combines, in a black-box fashion, multiple models trained with disjoint datasets, such as records from different subsets of users. Because they rely directly on sensitive data, these models are not published, but instead used as teachers for a student model. The student learns to predict an output chosen by noisy voting among all of the teachers, and cannot directly access an individual teacher or the underlying data or parameters. The students privacy properties can be understood both intuitively (since no single teacher and thus no single dataset dictates the students training) and formally, in terms of differential privacy. These properties hold even if an adversary can not only query the student but also inspect its internal workings. Compared with previous work, the approach imposes only weak assumptions on how teachers are trained: it applies to any model, including non-convex models like DNNs. We achieve state-of-the-art privacy/utility trade-offs on MNIST and SVHN thanks to an improved privacy analysis and semi-supervised learning.
The recent, remarkable growth of machine learning has led to intense interest in the privacy of the data on which machine learning relies, and to new techniques for preserving privacy. However, older ideas about privacy may well remain valid and usef ul. This note reviews two recent works on privacy in the light of the wisdom of some of the early literature, in particular the principles distilled by Saltzer and Schroeder in the 1970s.
79 - Jiaming Xu , Kuang Xu , Dana Yang 2021
Online convex optimization is a framework where a learner sequentially queries an external data source in order to arrive at the optimal solution of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversary that observe the submitted queries. In this paper, we study how to optimally obfuscate the learners queries in first-order online convex optimization, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversarys probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of accurate prediction by the adversary be kept below $1/L$, then the overhead in query complexity is additive in $L$ in the minimax formulation, but multiplicative in $L$ in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا