ﻻ يوجد ملخص باللغة العربية
Caching has been regarded as a promising technique to alleviate energy consumption of sensors in Internet of Things (IoT) networks by responding to users requests with the data packets stored in the edge caching node (ECN). For real-time applications in caching enabled IoT networks, it is essential to develop dynamic status update strategies to strike a balance between the information freshness experienced by users and energy consumed by the sensor, which, however, is not well addressed. In this paper, we first depict the evolution of information freshness, in terms of age of information (AoI), at each user. Then, we formulate a dynamic status update optimization problem to minimize the expectation of a long term accumulative cost, which jointly considers the users AoI and sensors energy consumption. To solve this problem, a Markov Decision Process (MDP) is formulated to cast the status updating procedure, and a model-free reinforcement learning algorithm is proposed, with which the challenge brought by the unknown of the formulated MDPs dynamics can be addressed. Finally, simulations are conducted to validate the convergence of our proposed algorithm and its effectiveness compared with the zero-wait baseline policy.
Fog Radio Access Network (F-RAN) architectures can leverage both cloud processing and edge caching for content delivery to the users. To this end, F-RAN utilizes caches at the edge nodes (ENs) and fronthaul links connecting a cloud processor to ENs.
In this paper we investigate the performance of caching schemes based on fountain codes in a heterogeneous satellite network. We consider multiple cache-aided hubs which are connected to a geostationary satellite through backhaul links. With the aimo
In this work, we propose a content caching and delivery strategy to maximize throughput capacity in cache-enabled wireless networks. To this end, efficient betweenness (EB), which indicates the ratio of content delivery paths passing through a node,
A status updating system is considered in which data from multiple sources are sampled by an energy harvesting sensor and transmitted to a remote destination through an erasure channel. The goal is to deliver status updates of all sources in a timely
We consider an energy harvesting source equipped with a finite battery, which needs to send timely status updates to a remote destination. The timeliness of status updates is measured by a non-decreasing penalty function of the Age of Information (Ao