ﻻ يوجد ملخص باللغة العربية
The combination of cloud computing capabilities at the network edge and artificial intelligence promise to turn future mobile networks into service- and radio-aware entities, able to address the requirements of upcoming latency-sensitive applications. In this context, a challenging research goal is to exploit edge intelligence to dynamically and optimally manage the Radio Access Network Slicing (that is a less mature and more complex technology than fifth-generation Network Slicing) and Radio Resource Management, which is a very complex task due to the mostly unpredictably nature of the wireless channel. This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management optimization supporting latency-sensitive applications. The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
Network slicing is born as an emerging business to operators, by allowing them to sell the customized slices to various tenants at different prices. In order to provide better-performing and cost-efficient services, network slicing involves challengi
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and li
Ultra-Reliable and Low-Latency Communications (URLLC) services in vehicular networks on millimeter-wave bands present a significant challenge, considering the necessity of constantly adjusting the beam directions. Conventional methods are mostly base
Highly dynamic mobile ad-hoc networks (MANETs) are continuing to serve as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing which, in a novel ma
Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aw