ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Lockdown for Pandemic Control

151   0   0.0 ( 0 )
 نشر من قبل Qianqian Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a common strategy of contagious disease containment, lockdown will inevitably weaken the economy. The ongoing COVID-19 pandemic underscores the trade-off arising from public health and economic cost. An optimal lockdown policy to resolve this trade-off is highly desired. Here we propose a mathematical framework of pandemic control through an optimal non-uniform lockdown, where our goal is to reduce the economic activity as little as possible while decreasing the number of infected individuals at a prescribed rate. This framework allows us to efficiently compute the optimal lockdown policy for general epidemic spread models, including both the classical SIS/SIR/SEIR models and a new model of COVID-19 transmissions. We demonstrate the power of this framework by analyzing publicly available data of inter-county travel frequencies to analyze a model of COVID-19 spread in the 62 counties of New York State. We find that an optimal lockdown based on epidemic status in April 2020 would have reduced economic activity more stringently outside of New York City compared to within it, even though the epidemic was much more prevalent in New York City at that point. Such a counterintuitive result highlights the intricacies of pandemic control and sheds light on future lockdown policy design.



قيم البحث

اقرأ أيضاً

COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i s broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju stment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a signifi cant proportion of susceptible may still be infected until the epidemic is over. A containment strategy is likely the best policy in the worst case where no vaccine or therapy is found. In order to keep the number of newly infected persons to a minimum, a possible strategy is to apply strict containment measures, so that the number of susceptible individuals remains close to herd immunity. Such an action is unrealistic since containment can only last for a finite amount of time and is never total. In this article, using a classical SIR model, we determine the (partial or total) containment strategy on a given finite time interval that maximizes the number of susceptible individuals over an infinite horizon, or equivalently that minimizes the total infection burden during the curse of the epidemic. The existence and uniqueness of the optimal strategy is proved and the latter is fully characterized. If applicable in practice, such a strategy would lead theoretically to an increase by 30% of the proportion of susceptible on an infinite horizon, for a containment level corresponding to the sanitary measures put in place in France from March to May 2020. We also analyze the minimum intervention time to reach a fixed distance from herd immunity, and show the relationship with the previous problem. Simulations are provided that illustrate and validate the theoretical results.
183 - Hailiang Liu , Xuping Tian 2020
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and lear ned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.
How to strategically allocate the available vaccines is a crucial issue for pandemic control. In this work, we propose a mathematical framework for optimal stabilizing vaccine allocation, where our goal is to send the infections to zero as soon as po ssible with a fixed number of vaccine doses. This framework allows us to efficiently compute the optimal vaccine allocation policy for general epidemic spread models including SIS/SIR/SEIR and a new model of COVID-19 transmissions. By fitting the real data in New York State to our framework, we found that the optimal stabilizing vaccine allocation policy suggests offering vaccines priority to locations where there are more susceptible people and where the residents spend longer time outside the home. Besides, we found that offering vaccines priority to young adults (20-29) and middle-age adults (20-44) can minimize the cumulative infected cases and the death cases. Moreover, we compared our method with five age-stratified strategies in cite{bubar2021model} based on their epidemics model. We also found its better to offer vaccine priorities to young people to curb the disease and minimize the deaths when the basic reproduction number $R_0$ is moderately above one, which describes the most world during COVID-19. Such phenomenon has been ignored in cite{bubar2021model}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا