ترغب بنشر مسار تعليمي؟ اضغط هنا

Using mobility data in the design of optimal lockdown strategies for the COVID-19 pandemic

75   0   0.0 ( 0 )
 نشر من قبل Ritabrata Dutta
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.

قيم البحث

اقرأ أيضاً

COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i s broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
Since the recent introduction of several viable vaccines for SARS-CoV-2, vaccination uptake has become the key factor that will determine our success in containing the COVID-19 pandemic. We argue that game theory and social network models should be u sed to guide decisions pertaining to vaccination programmes for the best possible results. In the months following the introduction of vaccines, their availability and the human resources needed to run the vaccination programmes have been scarce in many countries. Vaccine hesitancy is also being encountered from some sections of the general public. We emphasize that decision-making under uncertainty and imperfect information, and with only conditionally optimal outcomes, is a unique forte of established game-theoretic modelling. Therefore, we can use this approach to obtain the best framework for modelling and simulating vaccination prioritization and uptake that will be readily available to inform important policy decisions for the optimal control of the COVID-19 pandemic.
As a common strategy of contagious disease containment, lockdown will inevitably weaken the economy. The ongoing COVID-19 pandemic underscores the trade-off arising from public health and economic cost. An optimal lockdown policy to resolve this trad e-off is highly desired. Here we propose a mathematical framework of pandemic control through an optimal non-uniform lockdown, where our goal is to reduce the economic activity as little as possible while decreasing the number of infected individuals at a prescribed rate. This framework allows us to efficiently compute the optimal lockdown policy for general epidemic spread models, including both the classical SIS/SIR/SEIR models and a new model of COVID-19 transmissions. We demonstrate the power of this framework by analyzing publicly available data of inter-county travel frequencies to analyze a model of COVID-19 spread in the 62 counties of New York State. We find that an optimal lockdown based on epidemic status in April 2020 would have reduced economic activity more stringently outside of New York City compared to within it, even though the epidemic was much more prevalent in New York City at that point. Such a counterintuitive result highlights the intricacies of pandemic control and sheds light on future lockdown policy design.
To contain the pandemic of coronavirus (COVID-19) in Mainland China, the authorities have put in place a series of measures, including quarantines, social distancing, and travel restrictions. While these strategies have effectively dealt with the cri tical situations of outbreaks, the combination of the pandemic and mobility controls has slowed Chinas economic growth, resulting in the first quarterly decline of Gross Domestic Product (GDP) since GDP began to be calculated, in 1992. To characterize the potential shrinkage of the domestic economy, from the perspective of mobility, we propose two new economic indicators: the New Venues Created (NVC) and the Volumes of Visits to Venue (V^3), as the complementary measures to domestic investments and consumption activities, using the data of Baidu Maps. The historical records of these two indicators demonstrated strong correlations with the past figures of Chinese GDP, while the status quo has dramatically changed this year, due to the pandemic. We hereby presented a quantitative analysis to project the impact of the pandemic on economies, using the recent trends of NVC and V^3. We found that the most affected sectors would be travel-dependent businesses, such as hotels, educational institutes, and public transportation, while the sectors that are mandatory to human life, such as workplaces, residential areas, restaurants, and shopping sites, have been recovering rapidly. Analysis at the provincial level showed that the self-sufficient and self-sustainable economic regions, with internal supplies, production, and consumption, have recovered faster than those regions relying on global supply chains.
100 - Qibin Duan , Jinran Wu , Gaojun Wu 2020
The coronavirus disease 2019 (COVID-19) had caused more that 8 million infections as of middle June 2020. Recently, Brazil has become a new epicentre of COVID-19, while India and African region are potential epicentres. This study aims to predict the inflection point and outbreak size of these new/potential epicentres at the early phase of the epidemics by borrowing information from more `mature curves from other countries. We modeled the cumulative cases to the well-known sigmoid growth curves to describe the epidemic trends under the mixed-effect models and using the four-parameter logistic model after power transformations. African region is predicted to have the largest total outbreak size of 3.9 million cases (2.2 to 6 million), and the inflection will come around September 13, 2020. Brazil and India are predicted to have a similar final outbreak size of around 2.5 million cases (1.1 to 4.3 million), with the inflection points arriving June 23 and July 26, respectively. We conclude in Brazil, India, and African the epidemics of COVI19 have not yet passed the inflection points; these regions potentially can take over USA in terms of outbreak size
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا