ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal immunity control by social distancing for the SIR epidemic model

151   0   0.0 ( 0 )
 نشر من قبل Yannick Privat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a significant proportion of susceptible may still be infected until the epidemic is over. A containment strategy is likely the best policy in the worst case where no vaccine or therapy is found. In order to keep the number of newly infected persons to a minimum, a possible strategy is to apply strict containment measures, so that the number of susceptible individuals remains close to herd immunity. Such an action is unrealistic since containment can only last for a finite amount of time and is never total. In this article, using a classical SIR model, we determine the (partial or total) containment strategy on a given finite time interval that maximizes the number of susceptible individuals over an infinite horizon, or equivalently that minimizes the total infection burden during the curse of the epidemic. The existence and uniqueness of the optimal strategy is proved and the latter is fully characterized. If applicable in practice, such a strategy would lead theoretically to an increase by 30% of the proportion of susceptible on an infinite horizon, for a containment level corresponding to the sanitary measures put in place in France from March to May 2020. We also analyze the minimum intervention time to reach a fixed distance from herd immunity, and show the relationship with the previous problem. Simulations are provided that illustrate and validate the theoretical results.



قيم البحث

اقرأ أيضاً

We study the critical effect of an intermittent social distancing strategy on the propagation of epidemics in adaptive complex networks. We characterize the effect of our strategy in the framework of the susceptible-infected-recovered model. In our m odel, based on local information, a susceptible individual interrupts the contact with an infected individual with a probability $sigma$ and restores it after a fixed time $t_{b}$. We find that, depending on the network topology, in our social distancing strategy there exists a cutoff threshold $sigma_{c}$ beyond which the epidemic phase disappears. Our results are supported by a theoretical framework and extensive simulations of the model. Furthermore we show that this strategy is very efficient because it leads to a susceptible herd behavior that protects a large fraction of susceptibles individuals. We explain our results using percolation arguments.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
Network-based interventions against epidemic spread are most powerful when the full network structure is known. However, in practice, resource constraints require decisions to be made based on partial network information. We investigated how the accu racy of network data available at individual and village levels affected network-based vaccination effectiveness. We simulated a Susceptible-Infected-Recovered process on empirical social networks from 75 villages. First, we used regression to predict the percentage of individuals ever infected based on village-level network. Second, we simulated vaccinating 10 percent of each of the 75 empirical village networks at baseline, selecting vaccinees through one of five network-based approaches: random individuals; random contacts of random individuals; random high-degree individuals; highest degree individuals; or most central individuals. The first three approaches require only sample data; the latter two require full network data. We also simulated imposing a limit on how many contacts an individual can nominate (Fixed Choice Design, FCD), which reduces the data collection burden but generates only partially observed networks. We found mean and standard deviation of the degree distribution to strongly predict cumulative incidence. In simulations, the Nomination method reduced cumulative incidence by one-sixth compared to Random vaccination; full network methods reduced infection by two-thirds. The High Degree approach had intermediate effectiveness. Surprisingly, FCD truncating individuals degrees at three was as effective as using complete networks. Using even partial network information to prioritize vaccines at either the village or individual level substantially improved epidemic outcomes. Such approaches may be feasible and effective in outbreak settings, and full ascertainment of network structure may not be required.
Given maximal social distancing duration and intensity, how can one minimize the epidemic final size, or equivalently the total number of individuals infected during the outbreak? A complete answer to this question is provided and demonstrated here f or the SIR epidemic model. In this simplified setting, the optimal solution consists in enforcing the highest confinement level during the longest allowed period, beginning at a time instant that is the unique solution to certain 1D optimization problem. Based on this result, we present numerical results showing the best possible performance for a large set of basic reproduction numbers and lockdown durations and intensities.
183 - Hailiang Liu , Xuping Tian 2020
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and lear ned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا