ﻻ يوجد ملخص باللغة العربية
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
In order to analyze the effectiveness of three successive nationwide lockdown enforced in India, we present a data-driven analysis of four key parameters, reducing the transmission rate, restraining the growth rate, flattening the epidemic curve and
The study carries out predictive modeling based on publicly available COVID-19 data for the duration 01 April to 20 June 2020 pertaining to India and five of its most infected states: Maharashtra, Tamil Nadu, Delhi, Gujarat, and Rajasthan using susce
In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distanc
We consider here an extended SIR model, including several features of the recent COVID-19 outbreak: in particular the infected and recovered individuals can either be detected (+) or undetected (-) and we also integrate an intensive care unit (ICU) c
In this study, we present a new epidemiological model, with contamination from confirmed and unreported. We also compute equilibria and study their stability without intervention strategies. Optimal control theory has proven to be a successful tool i