ﻻ يوجد ملخص باللغة العربية
As a prototypical Mott insulator with ferromagnetic ordering, YTiO3 (YTO) is of great interest in the study of strong electron correlation effects and orbital ordering. Here we report the first molecular beam epitaxy (MBE) growth of YTO films, combined with theoretical and experimental characterization of the electronic structure and charge transport properties. The obstacles of YTO MBE growth are discussed and potential routes to overcome them are proposed. DC transport and Seebeck measurements on thin films and bulk single crystals identify p-type Arrhenius transport behavior, with an activation energy of ~ 0.17 eV in thin films, consistent with the energy barrier for small hole polaron migration from hybrid density functional theory (DFT) calculations. Hard X-ray photoelectron spectroscopy measurements (HAXPES) show the lower Hubbard band (LHB) at 1.1 eV below the Fermi level, whereas a Mott-Hubbard band gap of ~1.5 eV is determined from photoluminescence (PL) measurements. These findings provide critical insight into the electronic band structure of YTO and related materials.
The electronic structures of substitutional rare-earth (RE) impurities in GaAs and cubic GaN are calculated. The total energy is evaluated with the self-interaction corrected local spin density approximation, by which several configurations of the op
The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, t
High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-hig
We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires ($CP-M$) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using
The {em around-mean-field} LSDA+U correlated band theory is applied to investigate the electronic and magnetic structure of $fcc$-Pu-Am alloys. Despite a lattice expansion caused by the Am atoms, neither tendency to 5$f$ localization nor formation of