ﻻ يوجد ملخص باللغة العربية
The {em around-mean-field} LSDA+U correlated band theory is applied to investigate the electronic and magnetic structure of $fcc$-Pu-Am alloys. Despite a lattice expansion caused by the Am atoms, neither tendency to 5$f$ localization nor formation of local magnetic moments on Pu atoms in Pu-Am alloys are found. The $5f$-manifolds in the alloys are calculated being very similar to a simple weighted superposition of elemental Pu and Am $5f$-states.
Electronic structure calculations combining the local-density approximation with an exact diagonalization of the Anderson impurity model show an intermediate 5f^5-5f^6-valence ground state and delocalization of the 5f^5 multiplet of the Pu atom 5f-sh
We present the results of calculations for Pu and Am performed using an implementation of self-consistent relativistic GW method. The key feature of our scheme is to evaluate polarizability and self-energy in real space and Matsubaras time. We compar
We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires ($CP-M$) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using
We provide a straightforward and numerically efficient procedure to perform local density approximation + Hubbard I (LDA+HIA) calculations, including self-consistency over the charge density, within the full potential linearized augmented plane wave
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnS