ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism and electronic structure of YTiO$_3$ thin films

99   0   0.0 ( 0 )
 نشر من قبل Yanwei Cao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-high-energy-electron-diffraction, X-ray diffraction, vibrating sample magnetometry, and element-resolved resonant soft X-ray absorption spectroscopy. To reveal ferromagnetism of the constituent titanium ions, X-ray magnetic circular dichroism spectroscopy was carried out using four detection modes probing complimentary spatial scale, which overcomes a challenge of probing ferromagnetic titanium with pure Ti3+(3d$^1$). Our work provides a pathway to distinguish between the roles of titanium and A-site magnetic rare-earth cations in determining the magnetism in rare-earth titanates thin films and heterostructures.



قيم البحث

اقرأ أيضاً

265 - Xin Huang , Qingyu Xu , Shuai Dong 2014
The strain tuned magnetism of YTiO$_3$ film grown on the LaAlO$_3$ ($110$) substrate is studied by the method of the first principles, and compared with that of the ($001$)-oriented one. The obtained magnetism is totally different, which is ferromagn etic for the film on the ($110$) substrate but A-type antiferromagnetic on the ($001$) one. This orientation-dependent magnetism is attributed to the subtle orbital ordering of YTiO$_3$ film. The $d_{xz}$/$d_{yz}$-type orbital ordering is predominant for the ($001$) one, but for the ($110$) case, the $d_{xy}$ orbital is mostly occupied plus a few contribution from the $d_{xz}$/$d_{yz}$ orbital. Moreover, the lattice mismatch is modest for the ($110$) case but more serious for the ($001$) one, which is also responsible for this contrasting magnetism.
We have grown epitaxial thin films of multiferroic BiMnO$_3$ using pulsed laser deposition. The films were grown on SrTiO$_3$ (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the st oichiometry of the films was confirmed using Auger electron spectroscopy. The films have a ferromagnetic Curie temperature ($T_C$) of 85$pm$5 K and a saturation magnetization of 1 $mu_B$/Mn. The electric polarization as a function of electric field ($P-E$) was measured using an interdigital capacitance geometry. The $P-E$ plot shows a clear hysteresis that confirms the multiferroic nature of the thin films.
While structure refinement is routinely achieved for simple bulk materials, the accurate structural determination still poses challenges for thin films due on the one hand to the small amount of material deposited on the thicker substrate and, on the other hand, to the intricate epitaxial relationships that substantially complicate standard X-ray diffraction analysis. Using a combined approach, we analyze the crystal structure of epitaxial LaVO$_3$ thin films grown on (100)-oriented SrTiO$_3$. Transmission electron microscopy study reveals that the thin films are epitaxially grown on SrTiO$_3$ and points to the presence of 90$^{circ}$ oriented domains. The mapping of the reciprocal space obtained by high resolution X-ray diffraction permits refinement of the lattice parameters. We finally deduce that strain accommodation imposes a monoclinic structure onto the LaVO$_3$ film. The reciprocal space maps are numerically processed and the extracted data computed to refine the atomic positions, which are compared to those obtained using precession electron diffraction tomography. We discuss the obtained results and our methodological approach as a promising thin film structure determination for complex systems.
Ferromagnetism and exotic topological structures in SrRuO$_3$ (SRO) induce sign-changing anomalous Hall effect (AHE). Recently, hump structures have been reported in the Hall resistivity of SRO thin films, especially in the ultra-thin regime. We inve stigate the AHE and hump structure in the Hall resistivity of SRO ultra-thin films with an SrTiO$_3$ (STO) capping layer and ionic liquid gating. STO capping results in sign changes in the AHE and modulation of the hump structure. In particular, the hump structure in the Hall resistivity is strongly modulated and even vanishes in STO-capped 4 unit cell (uc) films. In addition, the conductivity of STO-capped SRO ultra-thin films is greatly enhanced with restored ferromagnetism. We also performed ionic liquid gating to modulate the electric field at SRO/STO interface. Drastic changes in the AHE and hump structure are observed with different gate voltages. Our study shows that the hump structure as well as the AHE can be controlled by tuning inversion symmetry and the electric field at the interface.
Heteroepitaxy offers a new type of control mechanism for the crystal structure, the electronic correlations, and thus the functional properties of transition-metal oxides. Here, we combine electrical transport measurements, high-resolution scanning t ransmission electron microscopy (STEM), and density functional theory (DFT) to investigate the evolution of the metal-to-insulator transition (MIT) in NdNiO$_3$ films as a function of film thickness and NdGaO$_3$ substrate crystallographic orientation. We find that for two different substrate facets, orthorhombic (101) and (011), modifications of the NiO$_6$ octahedral network are key for tuning the transition temperature $T_{text{MIT}}$ over a wide temperature range. A comparison of films of identical thickness reveals that growth on [101]-oriented substrates generally results in a higher $T_{text{MIT}}$, which can be attributed to an enhanced bond-disproportionation as revealed by the DFT+$U$ calculations, and a tendency of [011]-oriented films to formation of structural defects and stabilization of non-equilibrium phases. Our results provide insights into the structure-property relationship of a correlated electron system and its evolution at microscopic length scales and give new perspectives for the epitaxial control of macroscopic phases in metal-oxide heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا