ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of rare-earth impurities in GaAs and GaN

77   0   0.0 ( 0 )
 نشر من قبل Axel Svane
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structures of substitutional rare-earth (RE) impurities in GaAs and cubic GaN are calculated. The total energy is evaluated with the self-interaction corrected local spin density approximation, by which several configurations of the open 4f shell of the rare-earth ion may be investigated. The defects are modelled by supercells of type REGa$_{n-1}$As$_n$, for n=4, 8 and 16. The preferred defect is the rare-earth substituting Ga, for which case the rare-earth valency in intrinsic material is found to be trivalent in all cases except Ce and Pr in GaN. The 3+ --> 2+ f-level is found above the theoretical conduction band edge in all cases and within the experimental gap only for Eu, Tm and Yb in GaAs and for Eu in GaN. The exchange interaction of the rare-earth impurity with the states at both the valence band maximum and the conduction band minimum is weak, one to two orders of magnitude smaller than that of Mn impurities. Hence the coupling strength is insufficient to allow for ferromagnetic ordering of dilute impurities, except at very low temperatures.



قيم البحث

اقرأ أيضاً

82 - Xin Gui , Weiwei Xie 2020
The design and synthesis of targeted functional materials have been a long-term goal for material scientists. Although a universal design strategy is difficult to generate for all types of materials, however, it is still helpful for a typical family of materials to have such design rules. Herein, we incorporated several significant chemical and physical factors regarding magnetism, such as structure type, atom distance, spin-orbit coupling, and successfully synthesized a new rare-earth-free ferromagnet, MnPt5As, for the first time. MnPt5As can be prepared by using high-temperature pellet methods. According to X-ray diffraction results, MnPt5As crystallizes in a tetragonal unit cell with the space group P4/mmm (Pearson symbol tP7). Magnetic measurements on MnPt5As confirm ferromagnetism in this phase with a Curie temperature of ~301 K and a saturated moment of 3.5 uB per formula. Evaluation by applying the Stoner Criterion also indicates that MnPt5As is susceptible to ferromagnetism. Electronic structure calculations using the WIEN2k program with local spin density approximation imply that the spontaneous magnetization of this phase arises primarily from the hybridization of d orbitals on both Mn and Pt atoms. The theoretical assessments are consistent with the experimental results. Moreover, the spin-orbit coupling effects heavily influence on magnetic moments in MnPt5As. MnPt5As is the first high-performance magnetic material in this structure type. The discovery of MnPt5As offers a platform to study the interplay between magnetism and structure.
Recently the superconductivity has been discovered in the rock-salt structured binary lanthanum monoxide LaO through the state-of-the-art oxide thin-film epitaxy. This work reveals the normal state of superconducting LaO to be a $Z_2$ nontrivial topo logical metal that the Dirac point protected by the crystal symmetry is located at around the Fermi energy. By analysing the orbital characteristics, the nature of topological band structure of LaO originates from the intra-atomic transition in energy from outer shell La 5$d$ to inner shell 4$f$ orbitals driven by the strong octahedral crystal-field. Furthermore, the appearance of novel surface states unambiguously demonstrates the topological signature of LaO. Our theoretical findings not only shed light into the understanding of exotic quantum behaviors in LaO superconductor with intimate correlation between 4$f$ and 5$d$ orbitals in La, but also provide an exciting platform to explore the interplay of intriguing nontrivial topology and superconductivity.
We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is cruc ial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.
Combining density-functional theory calculations and microscopic tight-binding models, we investigate theoretically the electronic and magnetic properties of individual substitutional transition-metal impurities (Mn and Fe) positioned in the vicinity of the (110) surface of GaAs. For the case of the $[rm Mn^{2+}]^0$ plus acceptor-hole (h) complex, the results of a tight-binding model including explicitly the impurity $d$-electrons are in good agreement with approaches that treat the spin of the impurity as an effective classical vector. For the case of Fe, where both the neutral isoelectronic $[rm Fe^{3+}]^0$ and the ionized $[rm Fe^{2+}]^-$ states are relevant to address scanning tunneling microscopy (STM) experiments, the inclusion of $d$-orbitals is essential. We find that the in-gap electronic structure of Fe impurities is significantly modified by surface effects. For the neutral acceptor state $[{rm Fe}^{2+}, h]^0$, the magnetic-anisotropy dependence on the impurity sublayer resembles the case of $[{rm Mn}^{2+}, h]^0$. In contrast, for $[{rm Fe}^{3+}]^{0}$ electronic configuration the magnetic anisotropy behaves differently and it is considerably smaller. For this state we predict that it is possible to manipulate the Fe moment, e.g. by an external magnetic field, with detectable consequences in the local density of states probed by STM.
Based on the electronic band structure obtained from first principles DFT calculations, the opticalspectra of yttrium and neodymium nickelates are computed. We show that the results are in fairagreement with available experimental data. We clarify th e electronic transitions at the origin of thefirst two peaks, highlighting the important role of transitions from t2g states neglected in previousmodels. We discuss the evolution of the optical spectra from small to large rare-earth cations andrelate the changes to the electronic band structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا