ترغب بنشر مسار تعليمي؟ اضغط هنا

On Deep Unsupervised Active Learning

84   0   0.0 ( 0 )
 نشر من قبل Changsheng Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming that each sample can be well approximated by the span (i.e., the set of all linear combinations) of certain selected samples, and then take these selected samples as representative ones to label. However, in practice, the data do not necessarily conform to linear models, and how to model nonlinearity of data often becomes the key point to success. In this paper, we present a novel Deep neural network framework for Unsupervised Active Learning, called DUAL. DUAL can explicitly learn a nonlinear embedding to map each input into a latent space through an encoder-decoder architecture, and introduce a selection block to select representative samples in the the learnt latent space. In the selection block, DUAL considers to simultaneously preserve the whole input patterns as well as the cluster structure of data. Extensive experiments are performed on six publicly available datasets, and experimental results clearly demonstrate the efficacy of our method, compared with state-of-the-arts.



قيم البحث

اقرأ أيضاً

Deep learning models have demonstrated outstanding performance in several problems, but their training process tends to require immense amounts of computational and human resources for training and labeling, constraining the types of problems that ca n be tackled. Therefore, the design of effective training methods that require small labeled training sets is an important research direction that will allow a more effective use of resources.Among current approaches designed to address this issue, two are particularly interesting: data augmentation and active learning. Data augmentation achieves this goal by artificially generating new training points, while active learning relies on the selection of the most informative subset of unlabeled training samples to be labelled by an oracle. Although successful in practice, data augmentation can waste computational resources because it indiscriminately generates samples that are not guaranteed to be informative, and active learning selects a small subset of informative samples (from a large un-annotated set) that may be insufficient for the training process. In this paper, we propose a Bayesian generative active deep learning approach that combines active learning with data augmentation -- we provide theoretical and empirical evidence (MNIST, CIFAR-${10,100}$, and SVHN) that our approach has more efficient training and better classification results than data augmentation and active learning.
Recent successes of Deep Neural Networks (DNNs) in a variety of research tasks, however, heavily rely on the large amounts of labeled samples. This may require considerable annotation cost in real-world applications. Fortunately, active learning is a promising methodology to train high-performing model with minimal annotation cost. In the deep learning context, the critical question of active learning is how to precisely identify the informativeness of samples for DNN. In this paper, inspired by piece-wise linear interpretability in DNN, we introduce the linearly separable regions of samples to the problem of active learning, and propose a novel Deep Active learning approach by Model Interpretability (DAMI). To keep the maximal representativeness of the entire unlabeled data, DAMI tries to select and label samples on different linearly separable regions introduced by the piece-wise linear interpretability in DNN. We focus on modeling Multi-Layer Perception (MLP) for modeling tabular data. Specifically, we use the local piece-wise interpretation in MLP as the representation of each sample, and directly run K-Center clustering to select and label samples. To be noted, this whole process of DAMI does not require any hyper-parameters to tune manually. To verify the effectiveness of our approach, extensive experiments have been conducted on several tabular datasets. The experimental results demonstrate that DAMI constantly outperforms several state-of-the-art compared approaches.
Active learning (AL) attempts to maximize the performance gain of the model by marking the fewest samples. Deep learning (DL) is greedy for data and requires a large amount of data supply to optimize massive parameters, so that the model learns how t o extract high-quality features. In recent years, due to the rapid development of internet technology, we are in an era of information torrents and we have massive amounts of data. In this way, DL has aroused strong interest of researchers and has been rapidly developed. Compared with DL, researchers have relatively low interest in AL. This is mainly because before the rise of DL, traditional machine learning requires relatively few labeled samples. Therefore, early AL is difficult to reflect the value it deserves. Although DL has made breakthroughs in various fields, most of this success is due to the publicity of the large number of existing annotation datasets. However, the acquisition of a large number of high-quality annotated datasets consumes a lot of manpower, which is not allowed in some fields that require high expertise, especially in the fields of speech recognition, information extraction, medical images, etc. Therefore, AL has gradually received due attention. A natural idea is whether AL can be used to reduce the cost of sample annotations, while retaining the powerful learning capabilities of DL. Therefore, deep active learning (DAL) has emerged. Although the related research has been quite abundant, it lacks a comprehensive survey of DAL. This article is to fill this gap, we provide a formal classification method for the existing work, and a comprehensive and systematic overview. In addition, we also analyzed and summarized the development of DAL from the perspective of application. Finally, we discussed the confusion and problems in DAL, and gave some possible development directions for DAL.
Machine Learning (ML) is increasingly being used for computer aided diagnosis of brain related disorders based on structural magnetic resonance imaging (MRI) data. Most of such work employs biologically and medically meaningful hand-crafted features calculated from different regions of the brain. The construction of such highly specialized features requires a considerable amount of time, manual oversight and careful quality control to ensure the absence of errors in the computational process. Recent advances in Deep Representation Learning have shown great promise in extracting highly non-linear and information-rich features from data. In this paper, we present a novel large-scale deep unsupervised approach to learn generic feature representations of structural brain MRI scans, which requires no specialized domain knowledge or manual intervention. Our method produces low-dimensional representations of brain structure, which can be used to reconstruct brain images with very low error and exhibit performance comparable to FreeSurfer features on various classification tasks.
122 - Ziang Liu , Xue Jiang , Hanbin Luo 2020
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regression (ALR) approaches are supervise d, which means the sampling process must use some label information, or an existing regression model. This paper considers completely unsupervised ALR, i.e., how to select the samples to label without knowing any true label information. We propose a novel unsupervised ALR approach, iterative representativeness-diversity maximization (iRDM), to optimally balance the representativeness and the diversity of the selected samples. Experiments on 12 datasets from various domains demonstrated its effectiveness. Our iRDM can be applied to both linear regression and kernel regression, and it even significantly outperforms supervised ALR when the number of labeled samples is small.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا