ﻻ يوجد ملخص باللغة العربية
Machine Learning (ML) is increasingly being used for computer aided diagnosis of brain related disorders based on structural magnetic resonance imaging (MRI) data. Most of such work employs biologically and medically meaningful hand-crafted features calculated from different regions of the brain. The construction of such highly specialized features requires a considerable amount of time, manual oversight and careful quality control to ensure the absence of errors in the computational process. Recent advances in Deep Representation Learning have shown great promise in extracting highly non-linear and information-rich features from data. In this paper, we present a novel large-scale deep unsupervised approach to learn generic feature representations of structural brain MRI scans, which requires no specialized domain knowledge or manual intervention. Our method produces low-dimensional representations of brain structure, which can be used to reconstruct brain images with very low error and exhibit performance comparable to FreeSurfer features on various classification tasks.
In this paper, we propose an unsupervised collaborative representation deep network (UCRDNet) which consists of novel collaborative representation RBM (crRBM) and collaborative representation GRBM (crGRBM). The UCRDNet is a novel deep collaborative f
On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions at an esports game. The game of Dota 2 presents novel challenges for AI systems such as long time horizons, imperfect information, and complex, continuous state
Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming th
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-tim
Effectively and efficiently deploying graph neural networks (GNNs) at scale remains one of the most challenging aspects of graph representation learning. Many powerful solutions have only ever been validated on comparatively small datasets, often wit