ترغب بنشر مسار تعليمي؟ اضغط هنا

Pool-Based Unsupervised Active Learning for Regression Using Iterative Representativeness-Diversity Maximization (iRDM)

123   0   0.0 ( 0 )
 نشر من قبل Dongrui Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regression (ALR) approaches are supervised, which means the sampling process must use some label information, or an existing regression model. This paper considers completely unsupervised ALR, i.e., how to select the samples to label without knowing any true label information. We propose a novel unsupervised ALR approach, iterative representativeness-diversity maximization (iRDM), to optimally balance the representativeness and the diversity of the selected samples. Experiments on 12 datasets from various domains demonstrated its effectiveness. Our iRDM can be applied to both linear regression and kernel regression, and it even significantly outperforms supervised ALR when the number of labeled samples is small.



قيم البحث

اقرأ أيضاً

libact is a Python package designed to make active learning easier for general users. The package not only implements several popular active learning strategies, but also features the active-learning-by-learning meta-algorithm that assists the users to automatically select the best strategy on the fly. Furthermore, the package provides a unified interface for implementing more strategies, models and application-specific labelers. The package is open-source on Github, and can be easily installed from Python Package Index repository.
Active Learning is essential for more label-efficient deep learning. Bayesian Active Learning has focused on BALD, which reduces model parameter uncertainty. However, we show that BALD gets stuck on out-of-distribution or junk data that is not releva nt for the task. We examine a novel *Expected Predictive Information Gain (EPIG)* to deal with distribution shifts of the pool set. EPIG reduces the uncertainty of *predictions* on an unlabelled *evaluation set* sampled from the test data distribution whose distribution might be different to the pool set distribution. Based on this, our new EPIG-BALD acquisition function for Bayesian Neural Networks selects samples to improve the performance on the test data distribution instead of selecting samples that reduce model uncertainty everywhere, including for out-of-distribution regions with low density in the test data distribution. Our method outperforms state-of-the-art Bayesian active learning methods on high-dimensional datasets and avoids out-of-distribution junk data in cases where current state-of-the-art methods fail.
Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming th at each sample can be well approximated by the span (i.e., the set of all linear combinations) of certain selected samples, and then take these selected samples as representative ones to label. However, in practice, the data do not necessarily conform to linear models, and how to model nonlinearity of data often becomes the key point to success. In this paper, we present a novel Deep neural network framework for Unsupervised Active Learning, called DUAL. DUAL can explicitly learn a nonlinear embedding to map each input into a latent space through an encoder-decoder architecture, and introduce a selection block to select representative samples in the the learnt latent space. In the selection block, DUAL considers to simultaneously preserve the whole input patterns as well as the cluster structure of data. Extensive experiments are performed on six publicly available datasets, and experimental results clearly demonstrate the efficacy of our method, compared with state-of-the-arts.
164 - Ravi Ganti , Alexander Gray 2011
In this paper we address the problem of pool based active learning, and provide an algorithm, called UPAL, that works by minimizing the unbiased estimator of the risk of a hypothesis in a given hypothesis space. For the space of linear classifiers an d the squared loss we show that UPAL is equivalent to an exponentially weighted average forecaster. Exploiting some recent results regarding the spectra of random matrices allows us to establish consistency of UPAL when the true hypothesis is a linear hypothesis. Empirical comparison with an active learner implementation in Vowpal Wabbit, and a previously proposed pool based active learner implementation show good empirical performance and better scalability.
Given a linear regression setting, Iterative Least Trimmed Squares (ILTS) involves alternating between (a) selecting the subset of samples with lowest current loss, and (b) re-fitting the linear model only on that subset. Both steps are very fast and simple. In this paper we analyze ILTS in the setting of mixed linear regression with corruptions (MLR-C). We first establish deterministic conditions (on the features etc.) under which the ILTS iterate converges linearly to the closest mixture component. We also provide a global algorithm that uses ILTS as a subroutine, to fully solve mixed linear regressions with corruptions. We then evaluate it for the widely studied setting of isotropic Gaussian features, and establish that we match or better existing results in terms of sample complexity. Finally, we provide an ODE analysis for a gradient-descent variant of ILTS that has optimal time complexity. Our results provide initial theoretical evidence that iteratively fitting to the best subset of samples -- a potentially widely applicable idea -- can provably provide state of the art performance in bad training data settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا