ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling from Features: a Mean-field Framework for Over-parameterized Deep Neural Networks

81   0   0.0 ( 0 )
 نشر من قبل Cong Fang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a new mean-field framework for over-parameterized deep neural networks (DNNs), which can be used to analyze neural network training. In this framework, a DNN is represented by probability measures and functions over its features (that is, the function values of the hidden units over the training data) in the continuous limit, instead of the neural network parameters as most existing studies have done. This new representation overcomes the degenerate situation where all the hidden units essentially have only one meaningful hidden unit in each middle layer, and further leads to a simpler representation of DNNs, for which the training objective can be reformulated as a convex optimization problem via suitable re-parameterization. Moreover, we construct a non-linear dynamics called neural feature flow, which captures the evolution of an over-parameterized DNN trained by Gradient Descent. We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures. Furthermore, we show, for Res-Net, when the neural feature flow process converges, it reaches a global minimal solution under suitable conditions. Our analysis leads to the first global convergence proof for over-parameterized neural network training with more than $3$ layers in the mean-field regime.



قيم البحث

اقرأ أيضاً

In this paper, we study a regularised relaxed optimal control problem and, in particular, we are concerned with the case where the control variable is of large dimension. We introduce a system of mean-field Langevin equations, the invariant measure o f which is shown to be the optimal control of the initial problem under mild conditions. Therefore, this system of processes can be viewed as a continuous-time numerical algorithm for computing the optimal control. As an application, this result endorses the solvability of the stochastic gradient descent algorithm for a wide class of deep neural networks.
Recently, several studies have proven the global convergence and generalization abilities of the gradient descent method for two-layer ReLU networks. Most studies especially focused on the regression problems with the squared loss function, except fo r a few, and the importance of the positivity of the neural tangent kernel has been pointed out. On the other hand, the performance of gradient descent on classification problems using the logistic loss function has not been well studied, and further investigation of this problem structure is possible. In this work, we demonstrate that the separability assumption using a neural tangent model is more reasonable than the positivity condition of the neural tangent kernel and provide a refined convergence analysis of the gradient descent for two-layer networks with smooth activations. A remarkable point of our result is that our convergence and generalization bounds have much better dependence on the network width in comparison to related studies. Consequently, our theory provides a generalization guarantee for less over-parameterized two-layer networks, while most studies require much higher over-parameterization.
We consider whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit regularization. We focus on noiseless matrix sensing over rank-$r$ positive semi-definite (PSD) matrices in $mathbb{R}^{n times n}$, with a s ensing mechanism that satisfies restricted isometry properties (RIP). The algorithm we study is emph{factored gradient descent}, where we model the low-rankness and PSD constraints with the factorization $UU^top$, for $U in mathbb{R}^{n times r}$. Surprisingly, recent work argues that the choice of $r leq n$ is not pivotal: even setting $U in mathbb{R}^{n times n}$ is sufficient for factored gradient descent to find the rank-$r$ solution, which suggests that operating over the factors leads to an implicit regularization. In this contribution, we provide a different perspective to the problem of implicit regularization. We show that under certain conditions, the PSD constraint by itself is sufficient to lead to a unique rank-$r$ matrix recovery, without implicit or explicit low-rank regularization. emph{I.e.}, under assumptions, the set of PSD matrices, that are consistent with the observed data, is a singleton, regardless of the algorithm used.
We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strat egies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.
The aim of this paper is to develop a general framework for training neural networks (NNs) in a distributed environment, where training data is partitioned over a set of agents that communicate with each other through a sparse, possibly time-varying, connectivity pattern. In such distributed scenario, the training problem can be formulated as the (regularized) optimization of a non-convex social cost function, given by the sum of local (non-convex) costs, where each agent contributes with a single error term defined with respect to its local dataset. To devise a flexible and efficient solution, we customize a recently proposed framework for non-convex optimization over networks, which hinges on a (primal) convexification-decomposition technique to handle non-convexity, and a dynamic consensus procedure to diffuse information among the agents. Several typical choices for the training criterion (e.g., squared loss, cross entropy, etc.) and regularization (e.g., $ell_2$ norm, sparsity inducing penalties, etc.) are included in the framework and explored along the paper. Convergence to a stationary solution of the social non-convex problem is guaranteed under mild assumptions. Additionally, we show a principled way allowing each agent to exploit a possible multi-core architecture (e.g., a local cloud) in order to parallelize its local optimization step, resulting in strategies that are both distributed (across the agents) and parallel (inside each agent) in nature. A comprehensive set of experimental results validate the proposed approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا