ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Parallel and Distributed Training of Neural Networks

104   0   0.0 ( 0 )
 نشر من قبل Simone Scardapane
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to develop a general framework for training neural networks (NNs) in a distributed environment, where training data is partitioned over a set of agents that communicate with each other through a sparse, possibly time-varying, connectivity pattern. In such distributed scenario, the training problem can be formulated as the (regularized) optimization of a non-convex social cost function, given by the sum of local (non-convex) costs, where each agent contributes with a single error term defined with respect to its local dataset. To devise a flexible and efficient solution, we customize a recently proposed framework for non-convex optimization over networks, which hinges on a (primal) convexification-decomposition technique to handle non-convexity, and a dynamic consensus procedure to diffuse information among the agents. Several typical choices for the training criterion (e.g., squared loss, cross entropy, etc.) and regularization (e.g., $ell_2$ norm, sparsity inducing penalties, etc.) are included in the framework and explored along the paper. Convergence to a stationary solution of the social non-convex problem is guaranteed under mild assumptions. Additionally, we show a principled way allowing each agent to exploit a possible multi-core architecture (e.g., a local cloud) in order to parallelize its local optimization step, resulting in strategies that are both distributed (across the agents) and parallel (inside each agent) in nature. A comprehensive set of experimental results validate the proposed approach.



قيم البحث

اقرأ أيضاً

Residual neural networks (ResNets) are a promising class of deep neural networks that have shown excellent performance for a number of learning tasks, e.g., image classification and recognition. Mathematically, ResNet architectures can be interpreted as forward Euler discretizations of a nonlinear initial value problem whose time-dependent control variables represent the weights of the neural network. Hence, training a ResNet can be cast as an optimal control problem of the associated dynamical system. For similar time-dependent optimal control problems arising in engineering applications, parallel-in-time methods have shown notable improvements in scalability. This paper demonstrates the use of those techniques for efficient and effective training of ResNets. The proposed algorithms replace the classical (sequential) forward and backward propagation through the network layers by a parallel nonlinear multigrid iteration applied to the layer domain. This adds a new dimension of parallelism across layers that is attractive when training very deep networks. From this basic idea, we derive multiple layer-parallel methods. The most efficient version employs a simultaneous optimization approach where updates to the network parameters are based on inexact gradient information in order to speed up the training process. Using numerical examples from supervised classification, we demonstrate that the new approach achieves similar training performance to traditional methods, but enables layer-parallelism and thus provides speedup over layer-serial methods through greater concurrency.
The recent Natural Language Processing techniques have been refreshing the state-of-the-art performance at an incredible speed. Training huge language models is therefore an imperative demand in both industry and academy. However, huge language model s impose challenges to both hardware and software. Graphical processing units (GPUs) are iterated frequently to meet the exploding demand, and a variety of ASICs like TPUs are spawned. However, there is still a tension between the fast growth of the extremely huge models and the fact that Moores law is approaching the end. To this end, many model parallelism techniques are proposed to distribute the model parameters to multiple devices, so as to alleviate the tension on both memory and computation. Our work is the first to introduce a 3-dimensional model parallelism for expediting huge language models. By reaching a perfect load balance, our approach presents smaller memory and communication cost than existing state-of-the-art 1-D and 2-D model parallelism. Our experiments on 64 TACCs V100 GPUs show that our 3-D parallelism outperforms the 1-D and 2-D parallelism with 2.32x and 1.57x speedup, respectively.
We study the supervised learning problem under either of the following two models: (1) Feature vectors ${boldsymbol x}_i$ are $d$-dimensional Gaussians and responses are $y_i = f_*({boldsymbol x}_i)$ for $f_*$ an unknown quadratic function; (2) Featu re vectors ${boldsymbol x}_i$ are distributed as a mixture of two $d$-dimensional centered Gaussians, and $y_i$s are the corresponding class labels. We use two-layers neural networks with quadratic activations, and compare three different learning regimes: the random features (RF) regime in which we only train the second-layer weights; the neural tangent (NT) regime in which we train a linearization of the neural network around its initialization; the fully trained neural network (NN) regime in which we train all the weights in the network. We prove that, even for the simple quadratic model of point (1), there is a potentially unbounded gap between the prediction risk achieved in these three training regimes, when the number of neurons is smaller than the ambient dimension. When the number of neurons is larger than the number of dimensions, the problem is significantly easier and both NT and NN learning achieve zero risk.
In this paper, a geometric framework for neural networks is proposed. This framework uses the inner product space structure underlying the parameter set to perform gradient descent not in a component-based form, but in a coordinate-free manner. Convo lutional neural networks are described in this framework in a compact form, with the gradients of standard --- and higher-order --- loss functions calculated for each layer of the network. This approach can be applied to other network structures and provides a basis on which to create new networks.
The backpropagation algorithm has long been the canonical training method for neural networks. Modern paradigms are implicitly optimized for it, and numerous guidelines exist to ensure its proper use. Recently, synthetic gradients methods -where the error gradient is only roughly approximated - have garnered interest. These methods not only better portray how biological brains are learning, but also open new computational possibilities, such as updating layers asynchronously. Even so, they have failed to scale past simple tasks like MNIST or CIFAR-10. This is in part due to a lack of standards, leading to ill-suited models and practices forbidding such methods from performing to the best of their abilities. In this work, we focus on direct feedback alignment and present a set of best practices justified by observations of the alignment angles. We characterize a bottleneck effect that prevents alignment in narrow layers, and hypothesize it may explain why feedback alignment methods have yet to scale to large convolutional networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا