ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kernel Perspective for Regularizing Deep Neural Networks

95   0   0.0 ( 0 )
 نشر من قبل Alberto Bietti
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strategies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.

قيم البحث

اقرأ أيضاً

A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to the memorization capacity, the global convergence of grad ient descent algorithms and the generalization of deep nets. However, existing results either provide bounds in the two-layer setting or assume that the spectrum of the NTK matrices is bounded away from 0 for multi-layer networks. In this paper, we provide tight bounds on the smallest eigenvalue of NTK matrices for deep ReLU nets, both in the limiting case of infinite widths and for finite widths. In the finite-width setting, the network architectures we consider are fairly general: we require the existence of a wide layer with roughly order of $N$ neurons, $N$ being the number of data samples; and the scaling of the remaining layer widths is arbitrary (up to logarithmic factors). To obtain our results, we analyze various quantities of independent interest: we give lower bounds on the smallest singular value of hidden feature matrices, and upper bounds on the Lipschitz constant of input-output feature maps.
85 - Yueming Lyu , Ivor Tsang 2021
Recent studies show a close connection between neural networks (NN) and kernel methods. However, most of these analyses (e.g., NTK) focus on the influence of (infinite) width instead of the depth of NN models. There remains a gap between theory and p ractical network designs that benefit from the depth. This paper first proposes a novel kernel family named Neural Optimization Kernel (NOK). Our kernel is defined as the inner product between two $T$-step updated functionals in RKHS w.r.t. a regularized optimization problem. Theoretically, we proved the monotonic descent property of our update rule for both convex and non-convex problems, and a $O(1/T)$ convergence rate of our updates for convex problems. Moreover, we propose a data-dependent structured approximation of our NOK, which builds the connection between training deep NNs and kernel methods associated with NOK. The resultant computational graph is a ResNet-type finite width NN. Our structured approximation preserved the monotonic descent property and $O(1/T)$ convergence rate. Namely, a $T$-layer NN performs $T$-step monotonic descent updates. Notably, we show our $T$-layered structured NN with ReLU maintains a $O(1/T)$ convergence rate w.r.t. a convex regularized problem, which explains the success of ReLU on training deep NN from a NN architecture optimization perspective. For the unsupervised learning and the shared parameter case, we show the equivalence of training structured NN with GD and performing functional gradient descent in RKHS associated with a fixed (data-dependent) NOK at an infinity-width regime. For finite NOKs, we prove generalization bounds. Remarkably, we show that overparameterized deep NN (NOK) can increase the expressive power to reduce empirical risk and reduce the generalization bound at the same time. Extensive experiments verify the robustness of our structured NOK blocks.
For a certain scaling of the initialization of stochastic gradient descent (SGD), wide neural networks (NN) have been shown to be well approximated by reproducing kernel Hilbert space (RKHS) methods. Recent empirical work showed that, for some classi fication tasks, RKHS methods can replace NNs without a large loss in performance. On the other hand, two-layers NNs are known to encode richer smoothness classes than RKHS and we know of special examples for which SGD-trained NN provably outperform RKHS. This is true even in the wide network limit, for a different scaling of the initialization. How can we reconcile the above claims? For which tasks do NNs outperform RKHS? If feature vectors are nearly isotropic, RKHS methods suffer from the curse of dimensionality, while NNs can overcome it by learning the best low-dimensional representation. Here we show that this curse of dimensionality becomes milder if the feature vectors display the same low-dimensional structure as the target function, and we precisely characterize this tradeoff. Building on these results, we present a model that can capture in a unified framework both behaviors observed in earlier work. We hypothesize that such a latent low-dimensional structure is present in image classification. We test numerically this hypothesis by showing that specific perturbations of the training distribution degrade the performances of RKHS methods much more significantly than NNs.
Deep Gaussian processes (DGPs) have struggled for relevance in applications due to the challenges and cost associated with Bayesian inference. In this paper we propose a sparse variational approximation for DGPs for which the approximate posterior me an has the same mathematical structure as a Deep Neural Network (DNN). We make the forward pass through a DGP equivalent to a ReLU DNN by finding an interdomain transformation that represents the GP posterior mean as a sum of ReLU basis functions. This unification enables the initialisation and training of the DGP as a neural network, leveraging the well established practice in the deep learning community, and so greatly aiding the inference task. The experiments demonstrate improved accuracy and faster training compared to current DGP methods, while retaining favourable predictive uncertainties.
In this paper, we propose a novel adaptive kernel for the radial basis function (RBF) neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed fr amework dynamically adapts the weights of the participating kernels using the gradient descent method thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation namely nonlinear system identification, pattern classification and function approximation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا