ﻻ يوجد ملخص باللغة العربية
In this paper, we study a regularised relaxed optimal control problem and, in particular, we are concerned with the case where the control variable is of large dimension. We introduce a system of mean-field Langevin equations, the invariant measure of which is shown to be the optimal control of the initial problem under mild conditions. Therefore, this system of processes can be viewed as a continuous-time numerical algorithm for computing the optimal control. As an application, this result endorses the solvability of the stochastic gradient descent algorithm for a wide class of deep neural networks.
We study the long time behavior of an underdamped mean-field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to st
This paper proposes a new mean-field framework for over-parameterized deep neural networks (DNNs), which can be used to analyze neural network training. In this framework, a DNN is represented by probability measures and functions over its features (
In this paper, we propose a new first-order gradient-based algorithm to train deep neural networks. We first introduce the sign operation of stochastic gradients (as in sign-based methods, e.g., SIGN-SGD) into ADAM, which is called as signADAM. Moreo
Mean-field spin glasses are families of random energy functions (Hamiltonians) on high-dimensional product spaces. In this paper we consider the case of Ising mixed $p$-spin models, namely Hamiltonians $H_N:Sigma_Nto {mathbb R}$ on the Hamming hyperc
In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model. Although distributed learning techniques have been investigated extensively in deep learning, they are not directly appl