ﻻ يوجد ملخص باللغة العربية
The high sensitivity of optimized portfolios to estimation errors has prevented their practical application. To mitigate this sensitivity, we propose a new portfolio model called a Deeply Equal-Weighted Subset Portfolio (DEWSP). DEWSP is a subset of top-N ranked assets in an asset universe, the members of which are selected based on the predicted returns from deep learning algorithms and are equally weighted. Herein, we evaluate the performance of DEWSPs of different sizes N in comparison with the performance of other types of portfolios such as optimized portfolios and historically equal-weighed subset portfolios (HEWSPs), which are subsets of top-N ranked assets based on the historical mean returns. We found the following advantages of DEWSPs: First, DEWSPs provides an improvement rate of 0.24% to 5.15% in terms of monthly Sharpe ratio compared to the benchmark, HEWSPs. In addition, DEWSPs are built using a purely data-driven approach rather than relying on the efforts of experts. DEWSPs can also target the relative risk and return to the baseline of the EWP of an asset universe by adjusting the size N. Finally, the DEWSP allocation mechanism is transparent and intuitive. These advantages make DEWSP competitive in practice.
The fundamental principle in Modern Portfolio Theory (MPT) is based on the quantification of the portfolios risk related to performance. Although MPT has made huge impacts on the investment world and prompted the success and prevalence of passive inv
We propose a novel approach to infer investors risk preferences from their portfolio choices, and then use the implied risk preferences to measure the efficiency of investment portfolios. We analyze a dataset spanning a period of six years, consistin
We develop the idea of using Monte Carlo sampling of random portfolios to solve portfolio investment problems. In this first paper we explore the need for more general optimization tools, and consider the means by which constrained random portfolios
The first moment and second central moments of the portfolio return, a.k.a. mean and variance, have been widely employed to assess the expected profit and risk of the portfolio. Investors pursue higher mean and lower variance when designing the portf
We study the Markowitz portfolio selection problem with unknown drift vector in the multidimensional framework. The prior belief on the uncertain expected rate of return is modeled by an arbitrary probability law, and a Bayesian approach from filteri