ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian learning for the Markowitz portfolio selection problem

124   0   0.0 ( 0 )
 نشر من قبل Huyen Pham
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Markowitz portfolio selection problem with unknown drift vector in the multidimensional framework. The prior belief on the uncertain expected rate of return is modeled by an arbitrary probability law, and a Bayesian approach from filtering theory is used to learn the posterior distribution about the drift given the observed market data of the assets. The Bayesian Markowitz problem is then embedded into an auxiliary standard control problem that we characterize by a dynamic programming method and prove the existence and uniqueness of a smooth solution to the related semi-linear partial differential equation (PDE). The optimal Markowitz portfolio strategy is explicitly computed in the case of a Gaussian prior distribution. Finally, we measure the quantitative impact of learning, updating the strategy from observed data, compared to non-learning, using a constant drift in an uncertain context, and analyze the sensitivity of the value of information w.r.t. various relevant parameters of our model.



قيم البحث

اقرأ أيضاً

119 - Eduardo Abi Jaber 2020
This paper concerns portfolio selection with multiple assets under rough covariance matrix. We investigate the continuous-time Markowitz mean-variance problem for a multivariate class of affine and quadratic Volterra models. In this incomplete non-Ma rkovian and non-semimartingale market framework with unbounded random coefficients, the optimal portfolio strategy is expressed by means of a Riccati backward stochastic differential equation (BSDE). In the case of affine Volterra models, we derive explicit solutions to this BSDE in terms of multi-dimensional Riccati-Volterra equations. This framework includes multivariate rough Heston models and extends the results of cite{han2019mean}. In the quadratic case, we obtain new analytic formulae for the the Riccati BSDE and we establish their link with infinite dimensional Riccati equations. This covers rough Stein-Stein and Wishart type covariance models. Numerical results on a two dimensional rough Stein-Stein model illustrate the impact of rough volatilities and stochastic correlations on the optimal Markowitz strategy. In particular for positively correlated assets, we find that the optimal strategy in our model is a `buy rough sell smooth one.
We study the optimal portfolio allocation problem from a Bayesian perspective using value at risk (VaR) and conditional value at risk (CVaR) as risk measures. By applying the posterior predictive distribution for the future portfolio return, we deriv e relevant quantiles needed in the computations of VaR and CVaR, and express the optimal portfolio weights in terms of observed data only. This is in contrast to the conventional method where the optimal solution is based on unobserved quantities which are estimated, leading to suboptimality. We also obtain the expressions for the weights of the global minimum VaR and CVaR portfolios, and specify conditions for their existence. It is shown that these portfolios may not exist if the confidence level used for the VaR or CVaR computation are too low. Moreover, analytical expressions for the mean-VaR and mean-CVaR efficient frontiers are presented and the extension of theoretical results to general coherent risk measures is provided. One of the main advantages of the suggested Bayesian approach is that the theoretical results are derived in the finite-sample case and thus they are exact and can be applied to large-dimensional portfolios. By using simulation and real market data, we compare the new Bayesian approach to the conventional method by studying the performance and existence of the global minimum VaR portfolio and by analysing the estimated efficient frontiers. It is concluded that the Bayesian approach outperforms the conventional one, in particular at predicting the out-of-sample VaR.
This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.
We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.
We find economically and statistically significant gains when using machine learning for portfolio allocation between the market index and risk-free asset. Optimal portfolio rules for time-varying expected returns and volatility are implemented with two Random Forest models. One model is employed in forecasting the sign probabilities of the excess return with payout yields. The second is used to construct an optimized volatility estimate. Reward-risk timing with machine learning provides substantial improvements over the buy-and-hold in utility, risk-adjusted returns, and maximum drawdowns. This paper presents a new theoretical basis and unifying framework for machine learning applied to both return- and volatility-timing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا