ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Risk Preferences from Investment Portfolios Using Inverse Optimization

135   0   0.0 ( 0 )
 نشر من قبل Shi Yu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental principle in Modern Portfolio Theory (MPT) is based on the quantification of the portfolios risk related to performance. Although MPT has made huge impacts on the investment world and prompted the success and prevalence of passive investing, it still has shortcomings in real-world applications. One of the main challenges is that the level of risk an investor can endure, known as emph{risk-preference}, is a subjective choice that is tightly related to psychology and behavioral science in decision making. This paper presents a novel approach of measuring risk preference from existing portfolios using inverse optimization on the mean-variance portfolio allocation framework. Our approach allows the learner to continuously estimate real-time risk preferences using concurrent observed portfolios and market price data. We demonstrate our methods on real market data that consists of 20 years of asset pricing and 10 years of mutual fund portfolio holdings. Moreover, the quantified risk preference parameters are validated with two well-known risk measurements currently applied in the field. The proposed methods could lead to practical and fruitful innovations in automated/personalized portfolio management, such as Robo-advising, to augment financial advisors decision intelligence in a long-term investment horizon.

قيم البحث

اقرأ أيضاً

We propose a novel approach to infer investors risk preferences from their portfolio choices, and then use the implied risk preferences to measure the efficiency of investment portfolios. We analyze a dataset spanning a period of six years, consistin g of end of month stock trading records, along with investors demographic information and self-assessed financial knowledge. Unlike estimates of risk aversion based on the share of risky assets, our statistical analysis suggests that the implied risk aversion coefficient of an investor increases with her wealth and financial literacy. Portfolio diversification, Sharpe ratio, and expected portfolio returns correlate positively with the efficiency of the portfolio, whereas a higher standard deviation reduces the efficiency of the portfolio. We find that affluent and financially educated investors as well as those holding retirement related accounts hold more efficient portfolios.
In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Ri sk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.
In this article we solve the problem of maximizing the expected utility of future consumption and terminal wealth to determine the optimal pension or life-cycle fund strategy for a cohort of pension fund investors. The setup is strongly related to a DC pension plan where additionally (individual) consumption is taken into account. The consumption rate is subject to a time-varying minimum level and terminal wealth is subject to a terminal floor. Moreover, the preference between consumption and terminal wealth as well as the intertemporal coefficient of risk aversion are time-varying and therefore depend on the age of the considered pension cohort. The optimal consumption and investment policies are calculated in the case of a Black-Scholes financial market framework and hyperbolic absolute risk aversion (HARA) utility functions. We generalize Ye (2008) (2008 American Control Conference, 356-362) by adding an age-dependent coefficient of risk aversion and extend Steffensen (2011) (Journal of Economic Dynamics and Control, 35(5), 659-667), Hentschel (2016) (Doctoral dissertation, Ulm University) and Aase (2017) (Stochastics, 89(1), 115-141) by considering consumption in combination with terminal wealth and allowing for consumption and terminal wealth floors via an application of HARA utility functions. A case study on fitting several models to realistic, time-dependent life-cycle consumption and relative investment profiles shows that only our extended model with time-varying preference parameters provides sufficient flexibility for an adequate fit. This is of particular interest to life-cycle products for (private) pension investments or pension insurance in general.
This article studies a portfolio optimization problem, where the market consisting of several stocks is modeled by a multi-dimensional jump-diffusion process with age-dependent semi-Markov modulated coefficients. We study risk sensitive portfolio opt imization on the finite time horizon. We study the problem by using a probabilistic approach to establish the existence and uniqueness of the classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We also implement a numerical scheme to investigate the behavior of solutions for different values of the initial portfolio wealth, the maturity, and the risk of aversion parameter.
218 - Sang Il Lee 2020
The high sensitivity of optimized portfolios to estimation errors has prevented their practical application. To mitigate this sensitivity, we propose a new portfolio model called a Deeply Equal-Weighted Subset Portfolio (DEWSP). DEWSP is a subset of top-N ranked assets in an asset universe, the members of which are selected based on the predicted returns from deep learning algorithms and are equally weighted. Herein, we evaluate the performance of DEWSPs of different sizes N in comparison with the performance of other types of portfolios such as optimized portfolios and historically equal-weighed subset portfolios (HEWSPs), which are subsets of top-N ranked assets based on the historical mean returns. We found the following advantages of DEWSPs: First, DEWSPs provides an improvement rate of 0.24% to 5.15% in terms of monthly Sharpe ratio compared to the benchmark, HEWSPs. In addition, DEWSPs are built using a purely data-driven approach rather than relying on the efforts of experts. DEWSPs can also target the relative risk and return to the baseline of the EWP of an asset universe by adjusting the size N. Finally, the DEWSP allocation mechanism is transparent and intuitive. These advantages make DEWSP competitive in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا