ﻻ يوجد ملخص باللغة العربية
Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which generally involve incorporating nitrogen atoms (N) and vacancies (V) into the diamond through growth and/or irradiation. While there have been detailed studies of individual methods, a direct side-by-side experimental comparison of the resulting magnetic sensitivities is still missing. Here we characterise, at room and cryogenic temperatures, $approx100$ nm thick NV layers fabricated via three different methods: 1) low-energy carbon irradiation of N-rich high-pressure high-temperature (HPHT) diamond, 2) carbon irradiation of $delta$-doped chemical vapour deposition (CVD) diamond, 3) low-energy N$^+$ or CN$^-$ implantation into N-free CVD diamond. Despite significant variability within each method, we find that the best HPHT samples yield similar magnetic sensitivities (within a factor 2 on average) to our $delta$-doped samples, of $<2$~$mu$T Hz$^{-1/2}$ for DC magnetic fields and $<100$~nT Hz$^{-1/2}$ for AC fields (for a $400$~nm~$times~400$~nm pixel), while the N$^+$ and CN$^-$ implanted samples exhibit an inferior sensitivity by a factor 2-5, at both room and low temperature. We also examine the crystal lattice strain caused by the respective methods and discuss the implications this has for widefield NV imaging. The pros and cons of each method, and potential future improvements, are discussed. This study highlights that low-energy irradiation of HPHT diamond, despite its relative simplicity and low cost, is a competitive method to create thin NV layers for widefield magnetic imaging.
The application of imaging techniques based on ensembles of nitrogen-vacancy (NV) sensors in diamond to characterise electrical devices has been proposed, but the compatibility of NV sensing with operational gated devices remains largely unexplored.
Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing
Quantum sensors based on optically active defects in diamond such as the nitrogen vacancy (NV) centre represent a promising platform for nanoscale sensing and imaging of magnetic, electric, temperature and strain fields. Enhancing the optical interfa
We report measurements of the optical properties of the 1042 nm transition of negatively-charged Nitrogen-Vacancy (NV) centers in type 1b diamond. The results indicate that the upper level of this transition couples to the m_s=+/-1 sublevels of the {
We present a novel technique based on an ensemble of Nitrogen-Vacancy (NV) centers in diamond to perform Magnetic Current Imaging (MCI) on an Integrated Circuit (IC). NV centers in diamond allow measuring the three components of the magnetic fields g