ﻻ يوجد ملخص باللغة العربية
Quantum sensors based on optically active defects in diamond such as the nitrogen vacancy (NV) centre represent a promising platform for nanoscale sensing and imaging of magnetic, electric, temperature and strain fields. Enhancing the optical interface to such defects is key to improving the measurement sensitivity of these systems. Photonic nanostructures are often employed in the single emitter regime for this purpose, but their applicability to widefield sensing with NV ensembles remains largely unexplored. Here we fabricate and characterize closely-packed arrays of diamond nanopillars, each hosting its own dense, near-surface ensemble of NV centres. We explore the optimal geometry for diamond nanopillars hosting NV ensembles and realise enhanced spin and photoluminescence properties which lead to increased measurement sensitivities (greater than a factor of 3) when compared to unpatterned surfaces. Utilising the increased measurement sensitivity, we image the mechanical stress tensor in each nanopillar across the arrays and show the fabrication process has negligible impact on in-built stress compared to the unpatterned surface. Our results demonstrate that photonic nanostructuring of the diamond surface is a viable strategy for increasing the sensitivity of ensemble-based widefield sensing and imaging.
Nitrogen-vacancy (NV) centers in diamond have shown promise as inherently localized electric-field sensors, capable of detecting individual charges with nanometer resolution. Working with NV ensembles, we demonstrate that a detailed understanding of
We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to
Powered by the mutual developments in instrumentation, materials andtheoretical descriptions, sensing and imaging capabilities of quantum emitters insolids have significantly increased in the past two decades. Quantum emitters insolids, whose propert
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors. Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity via increased signal strength and