ﻻ يوجد ملخص باللغة العربية
We present a novel technique based on an ensemble of Nitrogen-Vacancy (NV) centers in diamond to perform Magnetic Current Imaging (MCI) on an Integrated Circuit (IC). NV centers in diamond allow measuring the three components of the magnetic fields generated by a mA range current in an IC structure over a field of 50 x 200 {mu}m^2 with sub-micron resolution. Vector measurements allow using a more robust algorithm than those used for MCI using Giant Magneto Resistance (GMR) or Superconducting Quantum Interference Device (SQUID) sensors and it is opening new current reconstruction prospects. Calculated MCI from these measurements shows a very good agreement with theoretical current path. Acquisition time is around 10 sec, which is much faster than scanning measurements using SQUID or GMR. The experimental set-up relies on a standard optical microscope, and the measurements can be performed at room temperature and atmospheric pressure. These early experiments, not optimized for IC, show that NV centers in diamond could become a real alternative for MCI in IC.
A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a functio
We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, in
Currently, thermally excited magnons are being intensively investigated owing to their potential in computing devices and thermoelectric conversion technologies. We report the detection of thermal magnon current propagating in a magnetic insulator yt
Characterizing the local internal environment surrounding solid-state spin defects is crucial to harnessing them as nanoscale sensors of external fields. This is especially germane to the case of defect ensembles which can exhibit a complex interplay
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center level