ﻻ يوجد ملخص باللغة العربية
Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing and information applications -- as well as for future dark matter detectors where directional information of incoming particles is encoded in crystal strain. Here, we exploit nanofocused scanning X-ray diffraction microscopy to quantitatively measure crystal deformation from growth defects in CVD diamond with high spatial and strain resolution. Combining information from multiple Bragg angles allows stereoscopic three-dimensional reconstruction of strained volumes; the diffraction results are validated via comparison to optical measurements of the strain tensor based on spin-state-dependent spectroscopy of ensembles of nitrogen vacancy (NV) centers in the diamond. Our results open a path towards directional detection of dark matter via X-ray measurement of crystal strain, and provide a new tool for diamond growth analysis and improvement of defect-based sensing.
We present a multi-purpose mirror furnace designed for synchrotron X-ray experiments. The furnace is optimized specifically for dark-field X-ray microscopy (DFXM) of crystalline materials at the beamline ID06 of the ESRF. The furnace can reach up to
Cross-sectional scanning tunneling microscopy (X-STM) was employed to characterize the InAs submonolayer quantum dots (SMLQDs) grown on top of a Si-doped GaAs(001) substrate in the presence of (2X4) and c(4X4) surface reconstructions. Multiple layers
Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which
Control of local lattice perturbations near optically-active defects in semiconductors is a key step to harnessing the potential of solid-state qubits for quantum information science and nanoscale sensing. We report the development of a stroboscopic
Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing of ultrathin electrical double layers at