ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Negative Sampling for Contrastive Learning of Visual Representations

114   0   0.0 ( 0 )
 نشر من قبل Mike Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent methods for learning unsupervised visual representations, dubbed contrastive learning, optimize the noise-contrastive estimation (NCE) bound on mutual information between two views of an image. NCE uses randomly sampled negative examples to normalize the objective. In this paper, we show that choosing difficult negatives, or those more similar to the current instance, can yield stronger representations. To do this, we introduce a family of mutual information estimators that sample negatives conditionally -- in a ring around each positive. We prove that these estimators lower-bound mutual information, with higher bias but lower variance than NCE. Experimentally, we find our approach, applied on top of existing models (IR, CMC, and MoCo) improves accuracy by 2-5% points in each case, measured by linear evaluation on four standard image datasets. Moreover, we find continued benefits when transferring features to a variety of new image distributions from the Meta-Dataset collection and to a variety of downstream tasks such as object detection, instance segmentation, and keypoint detection.

قيم البحث

اقرأ أيضاً

The principal contribution of this paper is a conceptual framework for off-policy reinforcement learning, based on conditional expectations of importance sampling ratios. This framework yields new perspectives and understanding of existing off-policy algorithms, and reveals a broad space of unexplored algorithms. We theoretically analyse this space, and concretely investigate several algorithms that arise from this framework.
How can you sample good negative examples for contrastive learning? We argue that, as with metric learning, contrastive learning of representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor poi nt). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use true similarity information. In response, we develop a new family of unsupervised sampling methods for selecting hard negative samples where the user can control the hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
Contrastive learning has delivered impressive results in many audio-visual representation learning scenarios. However, existing approaches optimize for learning either textit{global} representations useful for tasks such as classification, or textit{ local} representations useful for tasks such as audio-visual source localization and separation. While they produce satisfactory results in their intended downstream scenarios, they often fail to generalize to tasks that they were not originally designed for. In this work, we propose a versatile self-supervised approach to learn audio-visual representations that generalize to both the tasks which require global semantic information (e.g., classification) and the tasks that require fine-grained spatio-temporal information (e.g. localization). We achieve this by optimizing two cross-modal contrastive objectives that together encourage our model to learn discriminative global-local visual information given audio signals. To show that our approach learns generalizable video representations, we evaluate it on various downstream scenarios including action/sound classification, lip reading, deepfake detection, and sound source localization.
Self-supervised learning is a form of unsupervised learning that leverages rich information in data to learn representations. However, data sometimes contains certain information that may be undesirable for downstream tasks. For instance, gender info rmation may lead to biased decisions on many gender-irrelevant tasks. In this paper, we develop conditional contrastive learning to remove undesirable information in self-supervised representations. To remove the effect of the undesirable variable, our proposed approach conditions on the undesirable variable (i.e., by fixing the variations of it) during the contrastive learning process. In particular, inspired by the contrastive objective InfoNCE, we introduce Conditional InfoNCE (C-InfoNCE), and its computationally efficient variant, Weak-Conditional InfoNCE (WeaC-InfoNCE), for conditional contrastive learning. We demonstrate empirically that our methods can successfully learn self-supervised representations for downstream tasks while removing a great level of information related to the undesirable variables. We study three scenarios, each with a different type of undesirable variables: task-irrelevant meta-information for self-supervised speech representation learning, sensitive attributes for fair representation learning, and domain specification for multi-domain visual representation learning.
308 - Zhen Yang , Ming Ding , Chang Zhou 2020
Graph representation learning has been extensively studied in recent years. Despite its potential in generating continuous embeddings for various networks, both the effectiveness and efficiency to infer high-quality representations toward large corpu s of nodes are still challenging. Sampling is a critical point to achieve the performance goals. Prior arts usually focus on sampling positive node pairs, while the strategy for negative sampling is left insufficiently explored. To bridge the gap, we systematically analyze the role of negative sampling from the perspectives of both objective and risk, theoretically demonstrating that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance. To the best of our knowledge, we are the first to derive the theory and quantify that the negative sampling distribution should be positively but sub-linearly correlated to their positive sampling distribution. With the guidance of the theory, we propose MCNS, approximating the positive distribution with self-contrast approximation and accelerating negative sampling by Metropolis-Hastings. We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation, on a total of 19 experimental settings. These relatively comprehensive experimental results demonstrate its robustness and superiorities.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا