ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum chaos in a system with high degree of symmetries

102   0   0.0 ( 0 )
 نشر من قبل Jorge G. Hirsch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant subspaces and degenerate energy levels. While the standard procedure to reveal signatures of quantum chaos requires classifying the energy levels according to their symmetries, we show that this classification is not necessary to obtain manifestation of spectral correlations in the temporal evolution of the survival probability. Our findings exhibit the survival probability as a powerful tool to detect the presence of quantum chaos, avoiding the experimental and theoretical challenges associated with the determination of a complete set of energy eigenstates and their symmetry classification.



قيم البحث

اقرأ أيضاً

130 - Yochai Werman 2020
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the L yapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.
152 - Petr Seba , Daniel Vasata 2009
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi al. The level spacing distribution between its neighboring odd and even levels displays a surprising agreement with the prediction obtained for the Gaussian Orthogonal Ensemble of random matrices.
71 - Wenjie Liu , Min Zhuang , Bo Zhu 2020
Entanglement preparation and signal accumulation are essential for quantum parameter estimation, which pose significant challenges to both theories and experiments. Here, we propose how to utilize chaotic dynamics in a periodically driven Bose-Joseph son system for achieving a high-precision measurement beyond the standard quantum limit (SQL). Starting from an initial non-entangled state, the chaotic dynamics generates quantum entanglement and simultaneously encodes the parameter to be estimated. By using suitable chaotic dynamics, the ultimate measurement precision of the estimated parameter can beat the SQL. The sub-SQL measurement precision scaling can also be obtained via specific observables, such as population measurements, which can be realized with state-of-art techniques. Our study not only provides new insights for understanding quantum chaos and quantum-classical correspondence, but also is of promising applications in entanglement-enhanced quantum metrology.
81 - Guang Ping He 2017
Quantum steering means that in some bipartite quantum systems, the local measurements on one side can determine the state of the other side. Here we show that in high-dimensional systems, there exists a specific entangled state which can display a ki nd of chaos effect when being adopted for steering. That is, a subtle difference in the measurement results on one side can steer the other side into completely orthogonal states. Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary to common belief, even though their density matrices approach being identical, the steering between them is impossible. This property makes them very useful for quantum cryptography.
Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neu manns projective strong measurement and Aharonovs weak measurement. Here, we report the observation of a weak-to-strong measurement transition in a single trapped $40Ca^+$ ion system. The transition is realized by tuning the interaction strength between the ions internal electronic state and its vibrational motion, which play the roles of the measured system and the measuring pointer, respectively. By pre- and post-selecting the internal state, a pointer state composed of two of the ions motional wavepackets is obtained, and its central-position shift, which corresponds to the measurement outcome, demonstrates the transition from the weak-value asymptotes to the expected-value asymptotes. Quantitatively, the weak-to-strong measurement transition is characterized by a universal transition factor $e^{-Gamma^2}$, where $Gamma$ is a dimensionless parameter related to the system-apparatus coupling. This transition, which continuously connects weak measurements and strong measurements, may open new experimental possibilities to test quantum foundations and prompt us to re-examine and improve the measurement schemes of related quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا