ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos in quantum steering in high-dimensional systems

82   0   0.0 ( 0 )
 نشر من قبل Guang Ping He
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guang Ping He




اسأل ChatGPT حول البحث

Quantum steering means that in some bipartite quantum systems, the local measurements on one side can determine the state of the other side. Here we show that in high-dimensional systems, there exists a specific entangled state which can display a kind of chaos effect when being adopted for steering. That is, a subtle difference in the measurement results on one side can steer the other side into completely orthogonal states. Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary to common belief, even though their density matrices approach being identical, the steering between them is impossible. This property makes them very useful for quantum cryptography.



قيم البحث

اقرأ أيضاً

High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems, offering significant advantages for quantum information processing. Certifying these stronger correlations, however, remains an important challenge, in particular in an experimental setting. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum steering. We show that high-dimensional entanglement, as quantified by the Schmidt number, can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive simple two-setting steering inequalities, the violation of which guarantees the presence of genuine high-dimensional steering, and hence certifies a lower bound on the Schmidt number in a one-sided device-independent setting. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering. In particular, using an entangled state in dimension $d=31$, our data certifies a minimum Schmidt number of $n=15$.
For general dissipative dynamical systems we study what fraction of solutions exhibit chaotic behavior depending on the dimensionality $d$ of the phase space. We find that a system of $d$ globally coupled ODEs with quadratic and cubic non-linearities with random coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from $sim 10^{-5} - 10^{-4}$ for $d=3$ to essentially one for $dsim 50$. In the limit of large $d$, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity but does not depend on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling and for the probability of chaos.
159 - Petr Seba , Daniel Vasata 2009
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi al. The level spacing distribution between its neighboring odd and even levels displays a surprising agreement with the prediction obtained for the Gaussian Orthogonal Ensemble of random matrices.
Employing efficient diagonalization techniques, we perform a detailed quantitative study of the regular and chaotic regions in phase space in the simplest non-integrable atom-field system, the Dicke model. A close correlation between the classical Ly apunov exponents and the quantum Participation Ratio of coherent states on the eigenenergy basis is exhibited for different points in the phase space. It is also shown that the Participation Ratio scales linearly with the number of atoms in chaotic regions, and with its square root in the regular ones.
The accuracy of estimating $d$-dimensional quantum states is limited by the Gill-Massar bound. It can be saturated in the qubit ($d=2$) scenario using adaptive standard quantum tomography. In higher dimensions, however, this is not the case and the a ccuracy achievable with adaptive quantum tomography quickly deteriorates with increasing $d$. Moreover, it is not known whether or not the Gill-Massar bound can be reached for an arbitrary $d$. To overcome this limitation, we introduce an adaptive tomographic method that is characterized by a precision that is better than half that of the Gill-Massar bound for any finite dimension. This provides a new achievable accuracy limit for quantum state estimation. We demonstrate the high-accuracy of our method by estimating the state of 10-dimensional quantum systems. With the advent of new technologies capable of high-dimensional quantum information processing, our results become critically relevant as state reconstruction is an essential tool for certifying the proper operation of quantum devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا