ﻻ يوجد ملخص باللغة العربية
Entanglement preparation and signal accumulation are essential for quantum parameter estimation, which pose significant challenges to both theories and experiments. Here, we propose how to utilize chaotic dynamics in a periodically driven Bose-Josephson system for achieving a high-precision measurement beyond the standard quantum limit (SQL). Starting from an initial non-entangled state, the chaotic dynamics generates quantum entanglement and simultaneously encodes the parameter to be estimated. By using suitable chaotic dynamics, the ultimate measurement precision of the estimated parameter can beat the SQL. The sub-SQL measurement precision scaling can also be obtained via specific observables, such as population measurements, which can be realized with state-of-art techniques. Our study not only provides new insights for understanding quantum chaos and quantum-classical correspondence, but also is of promising applications in entanglement-enhanced quantum metrology.
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the L
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi
In the large-$N$, classical limit, the Bose-Hubbard dimer undergoes a transition to chaos when its tunnelling rate is modulated in time. We use exact and approximate numerical simulations to determine the features of the dynamically evolving state th
We study the particle-entanglement dynamics witnessed by the quantum Fisher information (QFI) of a trapped Bose-Einstein condensate governed by the kicked rotor Hamiltonian. The dynamics is investigated with a beyond mean-field approach. We link the
We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant subspaces and degenerate energy levels. While