ﻻ يوجد ملخص باللغة العربية
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the Lyapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.
A dissipative scheme is proposed to prepare tripartite $W$ state in a Rydberg-atom-cavity system. It is an organic combination of quantum Zeno dynamics, Rydberg antiblockade and atomic spontaneous emission to turn the tripartite $W$ state into the un
We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant subspaces and degenerate energy levels. While
Employing efficient diagonalization techniques, we perform a detailed quantitative study of the regular and chaotic regions in phase space in the simplest non-integrable atom-field system, the Dicke model. A close correlation between the classical Ly
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo