ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak-to-strong transition of quantum measurement in a trapped-ion system

241   0   0.0 ( 0 )
 نشر من قبل Yiming Pan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neumanns projective strong measurement and Aharonovs weak measurement. Here, we report the observation of a weak-to-strong measurement transition in a single trapped $40Ca^+$ ion system. The transition is realized by tuning the interaction strength between the ions internal electronic state and its vibrational motion, which play the roles of the measured system and the measuring pointer, respectively. By pre- and post-selecting the internal state, a pointer state composed of two of the ions motional wavepackets is obtained, and its central-position shift, which corresponds to the measurement outcome, demonstrates the transition from the weak-value asymptotes to the expected-value asymptotes. Quantitatively, the weak-to-strong measurement transition is characterized by a universal transition factor $e^{-Gamma^2}$, where $Gamma$ is a dimensionless parameter related to the system-apparatus coupling. This transition, which continuously connects weak measurements and strong measurements, may open new experimental possibilities to test quantum foundations and prompt us to re-examine and improve the measurement schemes of related quantum technologies.



قيم البحث

اقرأ أيضاً

Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary $U$. We demonstrate that the algorithm functions correctly irrespective of what unitary $U$ the server implements or how the server specifically realizes $U$. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped Yb ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.
Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the pure phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.
We consider pump-probe spectroscopy of a single ion with a highly metastable (probe) clock transition which is monitored by using the quantum jump technique. For a weak clock laser we obtain the well known Autler-Townes splitting. For stronger powers of the clock laser we demonstrate the transition to a new regime. The two regimes are distinguished by the transition of two complex eigenvalues to purely imaginary ones which can be very different in magnitude. The transition is controlled by the power of the clock laser. For pump on resonance we present simple analytical expressions for various linewidths and line positions.
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete interna l states and motional modes which can be described by continuous variables in an infinite dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian $|erangle langle e| ( a^{dagger} b + a b^{dagger})$ that swaps the quantum states of two motional modes, depending on the ions internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit. In such systems, the many-body ground state shows abrupt changes at zero temperature when the control pa rameter of the Hamiltonian is scanned across a quantum critical point. Recently it has been realized that a QPT can also occur in a simple system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report the first experimental demonstration of a QPT in the QRM using a single trapped ion. We measure the average spin-up state population of the ion and the average phonon number in its spatial oscillation mode as two order parameters and observe the clear evidences of the phase transition via slow quench of the coupling between the ion and its spatial motion. An experimental probe of the phase transitions in a fundamental quantum optics model without imposing the thermodynamic limit opens up a new window for the controlled study of QPTs and quantum critical phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا