ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson coupling in high-T$_c$ superconducting junctions using ultra-thin BaTiO$_3$ barriers

287   0   0.0 ( 0 )
 نشر من قبل N. Haberkorn Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electrical transport of vertically-stacked Josephson tunnel junctions using GdBa$_2$Cu$_3$O$_{7-d}$ electrodes and a BaTiO$_3$ barrier with thicknesses between 1 nm and 3 nm. The junctions with an area of 20 mm x 20 mm were fabricated combining optical lithography and ion etching using GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) / BaTiO$_3$ (1 - 3 nm) / GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) trilayers growth by sputtering on (100) SrTiO$_3$. Current-voltage measurements at low temperatures show a Josephson coupling for junctions with BaTiO$_3$ barriers of 1 nm and 2 nm. Reducing the barrier thickness bellow a critical thickness seems to suppress the ferroelectric nature of the BaTiO$_3$. The Josephson coupling temperature is strongly reduced for increasing barrier thicknesses, which may be related to the suppression of the superconducting critical temperature in the bottom GdBa$_2$Cu$_3$O$_{7-d}$ due to stress. The Josephson energies at 12 K are of $approx$ 1.5 mV and $approx$ 7.5 mV for BaTiO$_3$ barriers of 1 nm and 2 nm. Fraunhofer patterns are consistent with fluctuations in the critical current due to structural inhomogeneities in the barriers. Our results are promising for the development of Josephson junctions using high-T$_c$ electrodes with energy gaps much higher than those usually present in conventional low-temperature superconductors.


قيم البحث

اقرأ أيضاً

We report the electrical transport in vertical Josephson tunnel junctions (area 400 $mu m$$^2$) using GdBa$_2$Cu$_3$O$_7$$_{-delta}$ electrodes and SrTiO$_3$ as an insulating barrier (with thicknesses between 1 nm and 4 nm). The results show Josephso n coupling for junctions with SrTiO$_3$ barriers of 1 nm and 2 nm. The latter displays a Josephson of 8.9 mV at 12 K. This value is larger than the usually observed in planar arrays of junctions. Our results are promising for the development of superconducting electronic devices in the terahertz regime.
112 - Maayan Moshe , V.G. Kogan , 2008
We study the field dependence of the maximum supercurrent in narrow edge-type thin-film Josephson junctions. It is assumed that the junction extends across thin-film strip of width W that is much less than the Pearl length; the film thickness is much less than the London penetration depth. We calculate the maximum supercurrent within nonlocal Josephson electrodynamics, which takes into account the stray fields affecting tunneling currents. In the case when W is much less than the thin-film Josephson length, the phase difference along the junction depends only on the junction geometry and the applied field, but is independent of the Josephson critical current density, i.e., it is universal. Zeros of the maximum supercurrent are equidistant only in large fields (unlike the case of junctions with bulk banks); they are spaced by a field that is much smaller than the one of bulk junctions. Peaks of the maximum supercurrent decrease inversely proportional to the square root of the applied field, i.e., slower than 1/H for the bulk.
We have investigated the temperature and magnetic field dependence of the Hall coefficient of two well-characterized superconducting MgB$_2$ films (T$_{c0}$=38.0 K) in both the normal and superconducting states. Our results show that the normal-state Hall coefficient R$_H$ is positive and increases with decreasing temperature, independent of the applied magnetic field. Below T$_c$(H), R$_H$ decreases rapidly with temperature and changes sign before it reaches zero. The position and magnitude at which R$_H$ shows a minimum depends on the applied field. Quantitative analysis of our data indicates that the Hall response of MgB$_2$ behaves very similarly to that of high-T$_c$ cuprates: R$_H$ $propto$ T and cot$theta_H$ $propto$ T$^2$ in the normal state, and a sign reversal of R$_H$ in the mixed state. This suggests that the B-B layers in MgB$_2$, like the Cu-O planes in high-T$_c$ cuprates, play an important role in the electrical transport properties.
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transpor t across such junctions. For $N ge 3$, it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three $s$- or three $p$-wave superconductors, we provide analytic expressions for the Andreev bound state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of $4e^2/h$, where $e$ is the electron charge and $h = 2pi hbar$ is Plancks constant. For a sinusoidal current with frequency $omega$ applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage $langle V_1 rangle$ across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of $2e langle V_1 rangle/(hbar omega)$. We also use our formalism to study junctions of two $p$- and one $s$-wave wires. We find that the corresponding Andreev bound state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external applied voltage across the junction. We discuss experiments which may test our theory.
Josephson tunnel junctions with the strong ferromagnetic alloy $Fe_{0.75}Co_{0.25}$ as the barrier material were studied. The junctions were prepared with high quality down to a thickness range of a few monolayers of Fe-Co. An oscillation length of $ xi_{F2}approx 0.79:{rm {nm}}$ between 0 and $pi$-Josephson phase coupling and a very short decay length $xi_{F1}approx 0.22:{rm {nm}}$ for the amplitude of the superconducting pair wave function in the Fe-Co layer were determined. The rapid damping of the pair wave function inside the Fe-Co layer is caused by the strong ferromagnetic exchange field and additional magnetic pair breaking scattering. Josephson junctions with Fe-Co barriers show a significantly increased tendency towards magnetic remanence and flux trapping for larger thicknesses $d_{F}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا