ﻻ يوجد ملخص باللغة العربية
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For $N ge 3$, it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three $s$- or three $p$-wave superconductors, we provide analytic expressions for the Andreev bound state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of $4e^2/h$, where $e$ is the electron charge and $h = 2pi hbar$ is Plancks constant. For a sinusoidal current with frequency $omega$ applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage $langle V_1 rangle$ across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of $2e langle V_1 rangle/(hbar omega)$. We also use our formalism to study junctions of two $p$- and one $s$-wave wires. We find that the corresponding Andreev bound state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external applied voltage across the junction. We discuss experiments which may test our theory.
Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm
We consider a planar SIS-type Josephson junction between diffusive superconductors (S) through an insulating tunnel interface (I). We construct fully self-consistent perturbation theory with respect to the interface conductance. As a result, we find
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an
The anomalous proximity effect in dirty superconducting junctions is one of most striking phenomena highlighting the profound nature of Majorana bound states and odd-frequency Cooper pairs in topological superconductors. Motivated by the recent exper
We present analytical and numerical results for the electronic spectra of wires of a d-wave superconductor on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole structures of their wave f