ﻻ يوجد ملخص باللغة العربية
Josephson tunnel junctions with the strong ferromagnetic alloy $Fe_{0.75}Co_{0.25}$ as the barrier material were studied. The junctions were prepared with high quality down to a thickness range of a few monolayers of Fe-Co. An oscillation length of $xi_{F2}approx 0.79:{rm {nm}}$ between 0 and $pi$-Josephson phase coupling and a very short decay length $xi_{F1}approx 0.22:{rm {nm}}$ for the amplitude of the superconducting pair wave function in the Fe-Co layer were determined. The rapid damping of the pair wave function inside the Fe-Co layer is caused by the strong ferromagnetic exchange field and additional magnetic pair breaking scattering. Josephson junctions with Fe-Co barriers show a significantly increased tendency towards magnetic remanence and flux trapping for larger thicknesses $d_{F}$.
The dependence of the critical current density j_c on the ferromagnetic interlayer thickness d_F was determined for Nb/Al_2O_3/Cu/Ni/Nb Josephson tunnel junctions with ferromagnetic Ni interlayer from very thin film thicknesses (sim 1 nm) upwards and
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critic
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical current as a function
We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in
We have studied Josephson junctions with barriers prepared from the Heusler compound Cu$_2$MnAl. In the as-prepared state the Cu$_2$MnAl layers are non ferromagnetic and the critical Josephson current density $j_{c}$ decreases exponentially with the