ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning with Only Positive Labels

131   0   0.0 ( 0 )
 نشر من قبل Ankit Singh Rawat
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as the distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for the embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to the settings with large output spaces.

قيم البحث

اقرأ أيضاً

273 - Wensheng Xia , Ying Li , Lan Zhang 2021
Vertical federated learning is a collaborative machine learning framework to train deep leaning models on vertically partitioned data with privacy-preservation. It attracts much attention both from academia and industry. Unfortunately, applying most existing vertical federated learning methods in real-world applications still faces two daunting challenges. First, most existing vertical federated learning methods have a strong assumption that at least one party holds the complete set of labels of all data samples, while this assumption is not satisfied in many practical scenarios, where labels are horizontally partitioned and the parties only hold partial labels. Existing vertical federated learning methods can only utilize partial labels, which may lead to inadequate model update in end-to-end backpropagation. Second, computational and communication resources vary in parties. Some parties with limited computational and communication resources will become the stragglers and slow down the convergence of training. Such straggler problem will be exaggerated in the scenarios of horizontally partitioned labels in vertical federated learning. To address these challenges, we propose a novel vertical federated learning framework named Cascade Vertical Federated Learning (CVFL) to fully utilize all horizontally partitioned labels to train neural networks with privacy-preservation. To mitigate the straggler problem, we design a novel optimization objective which can increase stragglers contribution to the trained models. We conduct a series of qualitative experiments to rigorously verify the effectiveness of CVFL. It is demonstrated that CVFL can achieve comparable performance (e.g., accuracy for classification tasks) with centralized training. The new optimization objective can further mitigate the straggler problem comparing with only using the asynchronous aggregation mechanism during training.
Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati on or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential pri vacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models. In this paper, we investigate a utility enhancement scheme based on Laplacian smoothing for differentially private federated learning (DP-Fed-LS), where the parameter aggregation with injected Gaussian noise is improved in statistical precision without losing privacy budget. Our key observation is that the aggregated gradients in federated learning often enjoy a type of smoothness, i.e. sparsity in the graph Fourier basis with polynomial decays of Fourier coefficients as frequency grows, which can be exploited by the Laplacian smoothing efficiently. Under a prescribed differential privacy budget, convergence error bounds with tight rates are provided for DP-Fed-LS with uniform subsampling of heterogeneous Non-IID data, revealing possible utility improvement of Laplacian smoothing in effective dimensionality and variance reduction, among others. Experiments over MNIST, SVHN, and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee and membership privacy under both uniform and Poisson subsampling mechanisms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا