ترغب بنشر مسار تعليمي؟ اضغط هنا

A Vertical Federated Learning Framework for Horizontally Partitioned Labels

274   0   0.0 ( 0 )
 نشر من قبل Wensheng Xia
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Vertical federated learning is a collaborative machine learning framework to train deep leaning models on vertically partitioned data with privacy-preservation. It attracts much attention both from academia and industry. Unfortunately, applying most existing vertical federated learning methods in real-world applications still faces two daunting challenges. First, most existing vertical federated learning methods have a strong assumption that at least one party holds the complete set of labels of all data samples, while this assumption is not satisfied in many practical scenarios, where labels are horizontally partitioned and the parties only hold partial labels. Existing vertical federated learning methods can only utilize partial labels, which may lead to inadequate model update in end-to-end backpropagation. Second, computational and communication resources vary in parties. Some parties with limited computational and communication resources will become the stragglers and slow down the convergence of training. Such straggler problem will be exaggerated in the scenarios of horizontally partitioned labels in vertical federated learning. To address these challenges, we propose a novel vertical federated learning framework named Cascade Vertical Federated Learning (CVFL) to fully utilize all horizontally partitioned labels to train neural networks with privacy-preservation. To mitigate the straggler problem, we design a novel optimization objective which can increase stragglers contribution to the trained models. We conduct a series of qualitative experiments to rigorously verify the effectiveness of CVFL. It is demonstrated that CVFL can achieve comparable performance (e.g., accuracy for classification tasks) with centralized training. The new optimization objective can further mitigate the straggler problem comparing with only using the asynchronous aggregation mechanism during training.



قيم البحث

اقرأ أيضاً

Recently, Graph Neural Network (GNN) has achieved remarkable success in various real-world problems on graph data. However in most industries, data exists in the form of isolated islands and the data privacy and security is also an important issue. I n this paper, we propose FedVGCN, a federated GCN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GCN models. Specifically, we split the computation graph data into two parts. For each iteration of the training process, the two parties transfer intermediate results to each other under homomorphic encryption. We conduct experiments on benchmark data and the results demonstrate the effectiveness of FedVGCN in the case of GraphSage.
404 - Bin Gu , Zhiyuan Dang , Xiang Li 2020
In a lot of real-world data mining and machine learning applications, data are provided by multiple providers and each maintains private records of different feature sets about common entities. It is challenging to train these vertically partitioned data effectively and efficiently while keeping data privacy for traditional data mining and machine learning algorithms. In this paper, we focus on nonlinear learning with kernels, and propose a federated doubly stochastic kernel learning (FDSKL) algorithm for vertically partitioned data. Specifically, we use random features to approximate the kernel mapping function and use doubly stochastic gradients to update the solutions, which are all computed federatedly without the disclosure of data. Importantly, we prove that FDSKL has a sublinear convergence rate, and can guarantee the data security under the semi-honest assumption. Extensive experimental results on a variety of benchmark datasets show that FDSKL is significantly faster than state-of-the-art federated learning methods when dealing with kernels, while retaining the similar generalization performance.
We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as the distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for the embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to the settings with large output spaces.
Horizontal Federated learning (FL) handles multi-client data that share the same set of features, and vertical FL trains a better predictor that combine all the features from different clients. This paper targets solving vertical FL in an asynchronou s fashion, and develops a simple FL method. The new method allows each client to run stochastic gradient algorithms without coordination with other clients, so it is suitable for intermittent connectivity of clients. This method further uses a new technique of perturbed local embedding to ensure data privacy and improve communication efficiency. Theoretically, we present the convergence rate and privacy level of our method for strongly convex, nonconvex and even nonsmooth objectives separately. Empirically, we apply our method to FL on various image and healthcare datasets. The results compare favorably to centralized and synchronous FL methods.
Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are shared. Many existing approaches have focused on horizontal FL, where each party has the entire feature set and labels in the training data set. However, many real scenarios follow a vertically-partitioned FL setup, where a complete feature set is formed only when all the datasets from the parties are combined, and the labels are only available to a single party. Privacy-preserving vertical FL is challenging because complete sets of labels and features are not owned by one entity. Existing approaches for vertical FL require multiple peer-to-peer communications among parties, leading to lengthy training times, and are restricted to (approximated) linear models and just two parties. To close this gap, we propose FedV, a framework for secure gradient computation in vertical settings for several widely used ML models such as linear models, logistic regression, and support vector machines. FedV removes the need for peer-to-peer communication among parties by using functional encryption schemes; this allows FedV to achieve faster training times. It also works for larger and changing sets of parties. We empirically demonstrate the applicability for multiple types of ML models and show a reduction of 10%-70% of training time and 80% to 90% in data transfer with respect to the state-of-the-art approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا