ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning Classification With Noisy Labels

116   0   0.0 ( 0 )
 نشر من قبل Guillaume Sanchez
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classification or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.



قيم البحث

اقرأ أيضاً

We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
Recently deep neural networks have shown their capacity to memorize training data, even with noisy labels, which hurts generalization performance. To mitigate this issue, we provide a simple but effective baseline method that is robust to noisy label s, even with severe noise. Our objective involves a variance regularization term that implicitly penalizes the Jacobian norm of the neural network on the whole training set (including the noisy-labeled data), which encourages generalization and prevents overfitting to the corrupted labels. Experiments on both synthetically generated incorrect labels and realistic large-scale noisy datasets demonstrate that our approach achieves state-of-the-art performance with a high tolerance to severe noise.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
Interactive learning is a process in which a machine learning algorithm is provided with meaningful, well-chosen examples as opposed to randomly chosen examples typical in standard supervised learning. In this paper, we propose a new method for inter active learning from multiple noisy labels where we exploit the disagreement among annotators to quantify the easiness (or meaningfulness) of an example. We demonstrate the usefulness of this method in estimating the parameters of a latent variable classification model, and conduct experimental analyses on a range of synthetic and benchmark datasets. Furthermore, we theoretically analyze the performance of perceptron in this interactive learning framework.
Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly training deep neural networks (DNNs) as DNNs usually have the high capacity to memorize the noisy labels. In this paper, we find that the test accuracy can be qu antitatively characterized in terms of the noise ratio in datasets. In particular, the test accuracy is a quadratic function of the noise ratio in the case of symmetric noise, which explains the experimental findings previously published. Based on our analysis, we apply cross-validation to randomly split noisy datasets, which identifies most samples that have correct labels. Then we adopt the Co-teaching strategy which takes full advantage of the identified samples to train DNNs robustly against noisy labels. Compared with extensive state-of-the-art methods, our strategy consistently improves the generalization performance of DNNs under both synthetic and real-world training noise.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا