ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Graph Neural Networks with Noisy Labels

286   0   0.0 ( 0 )
 نشر من قبل Hoang Nguyen Thai
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approach for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.

قيم البحث

اقرأ أيضاً

Noisy labels are ubiquitous in real-world datasets, which poses a challenge for robustly training deep neural networks (DNNs) as DNNs usually have the high capacity to memorize the noisy labels. In this paper, we find that the test accuracy can be qu antitatively characterized in terms of the noise ratio in datasets. In particular, the test accuracy is a quadratic function of the noise ratio in the case of symmetric noise, which explains the experimental findings previously published. Based on our analysis, we apply cross-validation to randomly split noisy datasets, which identifies most samples that have correct labels. Then we adopt the Co-teaching strategy which takes full advantage of the identified samples to train DNNs robustly against noisy labels. Compared with extensive state-of-the-art methods, our strategy consistently improves the generalization performance of DNNs under both synthetic and real-world training noise.
Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati on or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.
Modern neural networks have the capacity to overfit noisy labels frequently found in real-world datasets. Although great progress has been made, existing techniques are limited in providing theoretical guarantees for the performance of the neural net works trained with noisy labels. Here we propose a novel approach with strong theoretical guarantees for robust training of deep networks trained with noisy labels. The key idea behind our method is to select weighted subsets (coresets) of clean data points that provide an approximately low-rank Jacobian matrix. We then prove that gradient descent applied to the subsets do not overfit the noisy labels. Our extensive experiments corroborate our theory and demonstrate that deep networks trained on our subsets achieve a significantly superior performance compared to state-of-the art, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7% increase in accuracy on mini Webvision.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
Interactive learning is a process in which a machine learning algorithm is provided with meaningful, well-chosen examples as opposed to randomly chosen examples typical in standard supervised learning. In this paper, we propose a new method for inter active learning from multiple noisy labels where we exploit the disagreement among annotators to quantify the easiness (or meaningfulness) of an example. We demonstrate the usefulness of this method in estimating the parameters of a latent variable classification model, and conduct experimental analyses on a range of synthetic and benchmark datasets. Furthermore, we theoretically analyze the performance of perceptron in this interactive learning framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا