ترغب بنشر مسار تعليمي؟ اضغط هنا

Rational evaluation of various epidemic models based on the COVID-19 data of China

388   0   0.0 ( 0 )
 نشر من قبل Liu Hong
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a rational evaluation of various epidemic models/methods, including seven empirical functions, four statistical inference methods and five dynamical models, on their forecasting abilities is carried out. With respect to the outbreak data of COVID-19 epidemics in China, we find that before the inflection point, all models fail to make a reliable prediction. The Logistic function consistently underestimates the final epidemic size, while the Gompertzs function makes an overestimation in all cases. Towards statistical inference methods, the methods of sequential Bayesian and time-dependent reproduction number are more accurate at the late stage of an epidemic. And the transition-like behavior of exponential growth method from underestimation to overestimation with respect to the inflection point might be useful for constructing a more reliable forecast. Compared to ODE-based SIR, SEIR and SEIR-AHQ models, the SEIR-QD and SEIR-PO models generally show a better performance on studying the COVID-19 epidemics, whose success we believe could be attributed to a proper trade-off between model complexity and fitting accuracy. Our findings not only are crucial for the forecast of COVID-19 epidemics, but also may apply to other infectious diseases.

قيم البحث

اقرأ أيضاً

The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of National Health Commission of China from Jan. 20 th to Feb. 9th, 2020, we reliably estimate key epidemic parameters and make predictions on the inflection point and possible ending time for 5 different regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two weeks, while for most part of China, including the majority of cities in Hubei province, the success of anti-epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be dated back to the end of December 2019, and the doubling time is around two days at the early stage.
With the unfolding of the COVID-19 pandemic, mathematical modeling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long term predictions were extremely challenging to address. Moreover, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modeling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed to describe the evolution of entropy during the COVID-19 pandemic and the instantaneous reproductive ratio. We then introduce and use entropy-based metrics of global transmission to measure the impact and temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modeled by the master equation of a nonlinear Markov process for a statistically averaged individual, leading to a clear physical interpretation. We also provide a full Bayesian inversion scheme for calibration. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the Susceptible-Exposed-Infected-Removed (SEIR) model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 data-sets, we discover a significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.
There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoi ng COVID-19 pandemic in Australia. This model is calibrated to match key characteristics of COVID-19 transmission. An important calibration outcome is the age-dependent fraction of symptomatic cases, with this fraction for children found to be one-fifth of such fraction for adults. We apply the model to compare several intervention strategies, including restrictions on international air travel, case isolation, home quarantine, social distancing with varying levels of compliance, and school closures. School closures are not found to bring decisive benefits, unless coupled with high level of social distancing compliance. We report several trade-offs, and an important transition across the levels of social distancing compliance, in the range between 70% and 80% levels, with compliance at the 90% level found to control the disease within 13--14 weeks, when coupled with effective case isolation and international travel restrictions.
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large -scale social distancing measures appears to be the most effective means of mitigation. Here we use an age-structured SIR model with social contact matrices obtained from surveys and Bayesian imputation to study the progress of the COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization are computed based on case data, age distribution and social contact structure. The impact of social distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with durations are then investigated. A three-week lockdown is found insufficient to prevent a resurgence and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are provided for the reduction in age-structured morbidity and mortality as a result of these measures. Our study underlines the importance of age and social contact structures in assessing the country-specific impact of mitigatory social distancing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا