ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial-Temporal Dataset of COVID-19 Outbreak in China

433   0   0.0 ( 0 )
 نشر من قبل Wenyuan Liu
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new infections, accumulated infections, daily new recoveries, accumulated recoveries, daily new deaths, and accumulated deaths. We cross validate the dataset and the estimate error rate is about 0.04%. We then give several examples to show how to trace the spreading in particular cities or provinces, and also contrast the development of COVID-19 in all cities in China at the early, middle and late stages. We hope this dataset can help researchers around the world better understand the spreading dynamics of COVID-19 at a regional level, to inform intervention and mitigation strategies for policymakers.



قيم البحث

اقرأ أيضاً

69 - Massimo Materassi 2020
Some ideas are presented about the physical motivation of the apparent capacity of generalized logistic equations to describe the outbreak of the COVID-19 infection, and in general of quite many other epidemics. The main focuses here are: the complex , possibly fractal, structure of the locus describing the contagion event set; what can be learnt from the models of trophic webs with herd behaviour.
The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of National Health Commission of China from Jan. 20 th to Feb. 9th, 2020, we reliably estimate key epidemic parameters and make predictions on the inflection point and possible ending time for 5 different regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two weeks, while for most part of China, including the majority of cities in Hubei province, the success of anti-epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be dated back to the end of December 2019, and the doubling time is around two days at the early stage.
68 - Ke Wu , Didier Darcet , Qian Wang 2020
Started in Wuhan, China, the COVID-19 has been spreading all over the world. We calibrate the logistic growth model, the generalized logistic growth model, the generalized Richards model and the generalized growth model to the reported number of infe cted cases for the whole of China, 29 provinces in China, and 33 countries and regions that have been or are undergoing major outbreaks. We dissect the development of the epidemics in China and the impact of the drastic control measures both at the aggregate level and within each province. We quantitatively document four phases of the outbreak in China with a detailed analysis on the heterogeneous situations across provinces. The extreme containment measures implemented by China were very effective with some instructive variations across provinces. Borrowing from the experience of China, we made scenario projections on the development of the outbreak in other countries. We identified that outbreaks in 14 countries (mostly in western Europe) have ended, while resurgences of cases have been identified in several among them. The modeling results clearly show longer after-peak trajectories in western countries, in contrast to most provinces in China where the after-peak trajectory is characterized by a much faster decay. We identified three groups of countries in different level of outbreak progress, and provide informative implications for the current global pandemic.
Background: Wuhan, China was the epicenter of COVID-19 pandemic. The goal of current study is to understand the infection transmission dynamics before intervention measures were taken. Methods: Data and key events were searched through pubmed and int ernet. Epidemiological data were calculated using data extracted from a variety of data sources. Results: We established a timeline showing by January 1, 2020, Chinese authorities had been presented convincing evidence of human-to-human transmission; however, it was not until January 20, 2020 that this information was shared with the public. Our study estimated that there would have been 10989 total infected cases if interventions were taken on January 2, 2020, versus 239875 cases when lockdown was put in place on January 23, 2020. Conclusions: Chinas withholding of key information about the 2020 COVID-19 outbreak and its delayed response ultimately led to the largest public health crisis of this century and could have been avoided with earlier countermeasures.
Understanding dynamics of an outbreak like that of COVID-19 is important in designing effective control measures. This study aims to develop an agent based model that compares changes in infection progression by manipulating different parameters in a synthetic population. Model input includes population characteristics like age, sex, working status etc. of each individual and other factors influencing disease dynamics. Depending on number of epicentres of infection, location of primary cases, sensitivity, proportion of asymptomatic and frequency or duration of lockdown, our simulator tracks every individual and hence infection progression through community over time. In a closed community of 10000 people, it is seen that without any lockdown, number of cases peak around 6th week and wanes off around 15th week. If primary case is located inside dense population cluster like slums, cases peak early and wane off slowly. With introduction of lockdown, cases peak at slower rate. If sensitivity of identifying infection decreases, cases and deaths increase. Number of cases declines with increase in proportion of asymptomatic cases. The model is robust and provides reproducible estimates with realistic parameter values. It also guides in identifying measures to control outbreak in a community. It is flexible in accommodating different parameters like infectivity period, yield of testing, socio-economic strata, daily travel, awareness level, population density, social distancing, lockdown etc. and can be tailored to study other infections with similar transmission pattern.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا