ﻻ يوجد ملخص باللغة العربية
With the unfolding of the COVID-19 pandemic, mathematical modeling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long term predictions were extremely challenging to address. Moreover, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modeling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed to describe the evolution of entropy during the COVID-19 pandemic and the instantaneous reproductive ratio. We then introduce and use entropy-based metrics of global transmission to measure the impact and temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modeled by the master equation of a nonlinear Markov process for a statistically averaged individual, leading to a clear physical interpretation. We also provide a full Bayesian inversion scheme for calibration. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the Susceptible-Exposed-Infected-Removed (SEIR) model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 data-sets, we discover a significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formu
There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoi
The reproductive number R_0 (and its value after initial disease emergence R) has long been used to predict the likelihood of pathogen invasion, to gauge the potential severity of an epidemic, and to set policy around interventions. However, often ig
We present a simple analytical model to describe the fast increase of deaths produced by the corona virus (COVID-19) infections. The D (deaths) model comes from a simplified version of the SIR (susceptible-infected-recovered) model known as SI model.
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters